生物柴油生产的各种来源、技术及其效率研究

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2022-12-27 DOI:10.1557/s43581-022-00058-4
Pulkit Kharia, R. Saini, Vamsi Krishna Kudapa
{"title":"生物柴油生产的各种来源、技术及其效率研究","authors":"Pulkit Kharia, R. Saini, Vamsi Krishna Kudapa","doi":"10.1557/s43581-022-00058-4","DOIUrl":null,"url":null,"abstract":"Energy from renewable sources is steadily expanding, even if fossil fuels remain the primary source of energy. Numerous advantages to biodiesel over other biofuels and fossil fuels make it a promising alternative fuel. It was the goal of this research project to distinguish between conventional and new technologies used throughout the biodiesel production and consumption life cycle. Biodiesel generation from micro-algal lipids and enhanced homogeneous and enzymatic transesterification, as well as non-catalytic supercritical transesterification using microwave and ultrasound as helping technologies, are all discussed in detail in the study. Our examination of biodiesel environmental assessment principles and current accomplishments takes into account all the variables that can affect the process efficiency and safety. Scientific research and development on biodiesel have increased over the past few decades. Alternative fuels are high in demand due to dwindling petroleum hydrocarbon supplies worldwide. Biodiesel, a type of biofuel, is now being hailed as a breakthrough commodity that will eventually replace petroleum-based diesel. Biodiesel is a crucial advantage over conventional diesel in biodegradability, reduced exhaust emissions, more outstanding flash points, good lubricity, and other characteristics. Feedstock for biodiesel production includes various edible oils, non-edible oils, animal fats, microalgal oils, waste oils, and advanced solar oil. Biodiesel is prepared by breaking down the fats and oils into their corresponding alkyl esters by heating them. Processes such as transesterification, dilution, pyrolysis, and microemulsion are used to synthesize biodiesel. Microwave-assisted transesterification, reactive distillation, membrane separation, reactive extraction, and ultrasound are all recent developments in biodiesel manufacturing. The present works compare the ongoing research in the area of various biodiesel production processes in terms of their effectiveness. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on various sources and technologies for production of biodiesel and its efficiency\",\"authors\":\"Pulkit Kharia, R. Saini, Vamsi Krishna Kudapa\",\"doi\":\"10.1557/s43581-022-00058-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy from renewable sources is steadily expanding, even if fossil fuels remain the primary source of energy. Numerous advantages to biodiesel over other biofuels and fossil fuels make it a promising alternative fuel. It was the goal of this research project to distinguish between conventional and new technologies used throughout the biodiesel production and consumption life cycle. Biodiesel generation from micro-algal lipids and enhanced homogeneous and enzymatic transesterification, as well as non-catalytic supercritical transesterification using microwave and ultrasound as helping technologies, are all discussed in detail in the study. Our examination of biodiesel environmental assessment principles and current accomplishments takes into account all the variables that can affect the process efficiency and safety. Scientific research and development on biodiesel have increased over the past few decades. Alternative fuels are high in demand due to dwindling petroleum hydrocarbon supplies worldwide. Biodiesel, a type of biofuel, is now being hailed as a breakthrough commodity that will eventually replace petroleum-based diesel. Biodiesel is a crucial advantage over conventional diesel in biodegradability, reduced exhaust emissions, more outstanding flash points, good lubricity, and other characteristics. Feedstock for biodiesel production includes various edible oils, non-edible oils, animal fats, microalgal oils, waste oils, and advanced solar oil. Biodiesel is prepared by breaking down the fats and oils into their corresponding alkyl esters by heating them. Processes such as transesterification, dilution, pyrolysis, and microemulsion are used to synthesize biodiesel. Microwave-assisted transesterification, reactive distillation, membrane separation, reactive extraction, and ultrasound are all recent developments in biodiesel manufacturing. The present works compare the ongoing research in the area of various biodiesel production processes in terms of their effectiveness. Graphical abstract\",\"PeriodicalId\":44802,\"journal\":{\"name\":\"MRS Energy & Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Energy & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/s43581-022-00058-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-022-00058-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

摘要

即使化石燃料仍然是主要能源,可再生能源的能源仍在稳步增长。与其他生物燃料和化石燃料相比,生物柴油有许多优点,使其成为一种有前景的替代燃料。该研究项目的目标是区分生物柴油生产和消费生命周期中使用的传统技术和新技术。本研究详细讨论了由微藻脂质产生生物柴油、增强的均相和酶促酯交换以及使用微波和超声波作为辅助技术的非催化超临界酯交换。我们对生物柴油环境评估原则和当前成就的审查考虑了可能影响工艺效率和安全性的所有变量。在过去的几十年里,生物柴油的科学研究和开发有所增加。由于全球石油碳氢化合物供应的减少,替代燃料的需求量很大。生物柴油是一种生物燃料,现在被誉为一种突破性商品,最终将取代石油柴油。生物柴油在生物降解性、减少废气排放、更突出的闪点、良好的润滑性和其他特性方面比传统柴油具有关键优势。生物柴油生产的原料包括各种食用油、非食用油、动物脂肪、微藻油、废油和高级太阳能油。生物柴油是通过加热将脂肪和油分解成相应的烷基酯来制备的。采用酯交换、稀释、热解和微乳液等工艺合成生物柴油。微波辅助酯交换、反应蒸馏、膜分离、反应萃取和超声波都是生物柴油生产的最新进展。目前的工作比较了在各种生物柴油生产工艺领域正在进行的研究的有效性。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on various sources and technologies for production of biodiesel and its efficiency
Energy from renewable sources is steadily expanding, even if fossil fuels remain the primary source of energy. Numerous advantages to biodiesel over other biofuels and fossil fuels make it a promising alternative fuel. It was the goal of this research project to distinguish between conventional and new technologies used throughout the biodiesel production and consumption life cycle. Biodiesel generation from micro-algal lipids and enhanced homogeneous and enzymatic transesterification, as well as non-catalytic supercritical transesterification using microwave and ultrasound as helping technologies, are all discussed in detail in the study. Our examination of biodiesel environmental assessment principles and current accomplishments takes into account all the variables that can affect the process efficiency and safety. Scientific research and development on biodiesel have increased over the past few decades. Alternative fuels are high in demand due to dwindling petroleum hydrocarbon supplies worldwide. Biodiesel, a type of biofuel, is now being hailed as a breakthrough commodity that will eventually replace petroleum-based diesel. Biodiesel is a crucial advantage over conventional diesel in biodegradability, reduced exhaust emissions, more outstanding flash points, good lubricity, and other characteristics. Feedstock for biodiesel production includes various edible oils, non-edible oils, animal fats, microalgal oils, waste oils, and advanced solar oil. Biodiesel is prepared by breaking down the fats and oils into their corresponding alkyl esters by heating them. Processes such as transesterification, dilution, pyrolysis, and microemulsion are used to synthesize biodiesel. Microwave-assisted transesterification, reactive distillation, membrane separation, reactive extraction, and ultrasound are all recent developments in biodiesel manufacturing. The present works compare the ongoing research in the area of various biodiesel production processes in terms of their effectiveness. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
MXenes vs MBenes: Demystifying the materials of tomorrow’s carbon capture revolution Materials scarcity during the clean energy transition: Myths, challenges, and opportunities Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1