Pub Date : 2024-01-08DOI: 10.1557/s43581-023-00074-y
Ching-Feng Chen, S. K. Chen
Abstract Using Life Cycle Energy Analysis (LCEA), the authors conduct the case study of the global most extensive 181-MWp offshore floating photovoltaic (OFPV) deployment at Taiwan’s Changhua Coastal Industrial Park station on carbon footprint inventory (CFI) by tracking one of the world’s top ten solar cell and module manufacturers with a high-quality management system. The EU initiated the “Carbon Border Adjustment Mechanism” (CBAM) 2021 to achieve the 2050 net-zero-carbon emission objective. Land elements challenge Taiwan’s solar energy industry due to its territory scarcity. Installing the OFPV system is attainable after the sector has demonstrated convincing attempts on reservoirs, detention ponds, and sea coasts in the past few years. The results show the project will produce 4529.2 GWh over 25 years and subside approximately 2305.4 kilo-tons (kt) of CO_2 emission. It generates an average of about 496 MWh daily into the grid, accounting for 1.41% of Taiwan’s 35 GWh peak energy generation. Additionally, the investor will achieve approximately US$43.8 million of potential carbon credit. The findings help PV systems’ CFI and decision-makers determine energy infrastructure strategies. Graphical abstract Monthly power generation duration curves Highlights 1. As greenhouse gas (GHG) emissions have not reached the promises, many countries addressed ensuring net-zero CO_2 emissions by 2050 to curtail the global temperature rise by 1.5 °C. 2. The EU initiated a carbon border adjustment mechanism (CBAM) to impose carbon credit from 2023. 3. Establishing the EU emissions trading systems (ETS) benefits a zero-carbon economy and GHG emissions. 4. The life cycle energy analysis (LCEA) is a practical energy return evaluation for carbon footprint inventory (CFI). 5. Using the CFI of product-product category rules (CFP-PCR) formulated by Taiwan’s Environmental Protection Agency (TEPA), the author performed the global most extensive 181-MWp offshore FPV system at Taiwan’s Changhua Coastal Industrial Park in a 25-year lifespan. Discussion Performing emission mitigation measures results in cost savings through enhanced energy efficiency; establishing ETS to serve carbon credit transactions will bring potential benefits [92]. The CFI is critical for organizations committed to taking proactive steps to address climate change and sustainability, and see-through addressing CFI strengthens stakeholder confidence and association with investors and customers. Taiwan’s land scarcity confines its PV industry development. It is crucial for the authorities to thoroughly investigate and affirm which coastal areas are accessible for erecting FPV to increase clean energy use, as improving the CFI is imperative.
{"title":"Carbon footprint inventory using life cycle energy analysis","authors":"Ching-Feng Chen, S. K. Chen","doi":"10.1557/s43581-023-00074-y","DOIUrl":"https://doi.org/10.1557/s43581-023-00074-y","url":null,"abstract":"Abstract Using Life Cycle Energy Analysis (LCEA), the authors conduct the case study of the global most extensive 181-MWp offshore floating photovoltaic (OFPV) deployment at Taiwan’s Changhua Coastal Industrial Park station on carbon footprint inventory (CFI) by tracking one of the world’s top ten solar cell and module manufacturers with a high-quality management system. The EU initiated the “Carbon Border Adjustment Mechanism” (CBAM) 2021 to achieve the 2050 net-zero-carbon emission objective. Land elements challenge Taiwan’s solar energy industry due to its territory scarcity. Installing the OFPV system is attainable after the sector has demonstrated convincing attempts on reservoirs, detention ponds, and sea coasts in the past few years. The results show the project will produce 4529.2 GWh over 25 years and subside approximately 2305.4 kilo-tons (kt) of CO_2 emission. It generates an average of about 496 MWh daily into the grid, accounting for 1.41% of Taiwan’s 35 GWh peak energy generation. Additionally, the investor will achieve approximately US$43.8 million of potential carbon credit. The findings help PV systems’ CFI and decision-makers determine energy infrastructure strategies. Graphical abstract Monthly power generation duration curves Highlights 1. As greenhouse gas (GHG) emissions have not reached the promises, many countries addressed ensuring net-zero CO_2 emissions by 2050 to curtail the global temperature rise by 1.5 °C. 2. The EU initiated a carbon border adjustment mechanism (CBAM) to impose carbon credit from 2023. 3. Establishing the EU emissions trading systems (ETS) benefits a zero-carbon economy and GHG emissions. 4. The life cycle energy analysis (LCEA) is a practical energy return evaluation for carbon footprint inventory (CFI). 5. Using the CFI of product-product category rules (CFP-PCR) formulated by Taiwan’s Environmental Protection Agency (TEPA), the author performed the global most extensive 181-MWp offshore FPV system at Taiwan’s Changhua Coastal Industrial Park in a 25-year lifespan. Discussion Performing emission mitigation measures results in cost savings through enhanced energy efficiency; establishing ETS to serve carbon credit transactions will bring potential benefits [92]. The CFI is critical for organizations committed to taking proactive steps to address climate change and sustainability, and see-through addressing CFI strengthens stakeholder confidence and association with investors and customers. Taiwan’s land scarcity confines its PV industry development. It is crucial for the authorities to thoroughly investigate and affirm which coastal areas are accessible for erecting FPV to increase clean energy use, as improving the CFI is imperative.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"10 5","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1557/s43581-023-00079-7
M. Puškár, M. Kopas
Abstract Global goals, including those of the EU, are focussed on transition to the green, circular and low-carbon economy. The intention within the framework of EU is to achieve the zero level of CO_2 emissions for the new cars till the year 2035. An important part of this plan is the agreement between Germany and the European Union that the new vehicles equipped with the internal combustion engines can continue to be sold only in such a case if they will use solely the climate-neutral fuel. Therefore, the future will probably belong to application of the advanced low-temperature technologies in combination with the climate-sustainable fuels (e.g. synthetic fuels, hydrogen). The presented scientific-research work introduces two new low-temperature combustion systems, which were developed and patented at the national level. At the same time, these new combustion systems are tested in cooperation with a reputable automotive producer. It is necessary to emphasize such a positive fact that the obtained results prove relevance of the innovative combustion systems as well as their possible future applicability in the real vehicles as a part of the advanced hybrid drive system. Graphical abstract Highlights Nowadays, the significant efforts are focussed on reduction of gaseous emissions generated by the transport, what is resulting in development of electromobility. CO_2 neutrality in the transport sector cannot be reached by the electromobility alone. A potential solution is a combination of the sustainable fuels and advanced low-temperature combustion technologies. These two systems, which are presented in the article, were the subject of experimental research and development. Discussion Within the EU, there are strong efforts for a total restriction of internal combustion engines. The German Association of Automotive Industry (VDA) declares that “CO_2 neutrality in the transport sector cannot be solved by the electromobility alone”. The official statement of VDA continues: “Even if, in ideal case, we had 15 million electric cars on the roads in 2030, most of the vehicles will still be equipped with combustion engines. Nowadays, 280 million cars are using combustion engines in everyday operation in the EU and there are 1.5 billion of them worldwide. Climate-neutral transport is impossible without new structure of global vehicle fleet and its decarbonisation”. According to VDA, the only solution, how to reduce emission footprint, using the current vehicle fleet, is application of the synthetic fuels. Therefore, still more resources should be invested into research and development of new sustainable fuels.
{"title":"Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles","authors":"M. Puškár, M. Kopas","doi":"10.1557/s43581-023-00079-7","DOIUrl":"https://doi.org/10.1557/s43581-023-00079-7","url":null,"abstract":"Abstract Global goals, including those of the EU, are focussed on transition to the green, circular and low-carbon economy. The intention within the framework of EU is to achieve the zero level of CO_2 emissions for the new cars till the year 2035. An important part of this plan is the agreement between Germany and the European Union that the new vehicles equipped with the internal combustion engines can continue to be sold only in such a case if they will use solely the climate-neutral fuel. Therefore, the future will probably belong to application of the advanced low-temperature technologies in combination with the climate-sustainable fuels (e.g. synthetic fuels, hydrogen). The presented scientific-research work introduces two new low-temperature combustion systems, which were developed and patented at the national level. At the same time, these new combustion systems are tested in cooperation with a reputable automotive producer. It is necessary to emphasize such a positive fact that the obtained results prove relevance of the innovative combustion systems as well as their possible future applicability in the real vehicles as a part of the advanced hybrid drive system. Graphical abstract Highlights Nowadays, the significant efforts are focussed on reduction of gaseous emissions generated by the transport, what is resulting in development of electromobility. CO_2 neutrality in the transport sector cannot be reached by the electromobility alone. A potential solution is a combination of the sustainable fuels and advanced low-temperature combustion technologies. These two systems, which are presented in the article, were the subject of experimental research and development. Discussion Within the EU, there are strong efforts for a total restriction of internal combustion engines. The German Association of Automotive Industry (VDA) declares that “CO_2 neutrality in the transport sector cannot be solved by the electromobility alone”. The official statement of VDA continues: “Even if, in ideal case, we had 15 million electric cars on the roads in 2030, most of the vehicles will still be equipped with combustion engines. Nowadays, 280 million cars are using combustion engines in everyday operation in the EU and there are 1.5 billion of them worldwide. Climate-neutral transport is impossible without new structure of global vehicle fleet and its decarbonisation”. According to VDA, the only solution, how to reduce emission footprint, using the current vehicle fleet, is application of the synthetic fuels. Therefore, still more resources should be invested into research and development of new sustainable fuels.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"7 5","pages":"1-13"},"PeriodicalIF":4.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study","authors":"Mallak Alrai, Mahmoud Abuwardeh, Mutaz Al-Ghzaiwat, Samer As’ad","doi":"10.1557/s43581-023-00071-1","DOIUrl":"https://doi.org/10.1557/s43581-023-00071-1","url":null,"abstract":"","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"2 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.1557/s43581-023-00070-2
Y. Shirley Meng
{"title":"Celebrating 50 years of the Materials Research Society","authors":"Y. Shirley Meng","doi":"10.1557/s43581-023-00070-2","DOIUrl":"https://doi.org/10.1557/s43581-023-00070-2","url":null,"abstract":"","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135421121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid growth of energy consumption and greenhouse gas emissions, the application of traditional ships brings more and more serious pollution problems to the marine environment. For this reason, this paper aims at developing a novel optimal energy scheduling for hybrid ship power system based on bi-level optimization model to reduce fossil fuel consumption and protect the environment. Firstly, a hybrid ship power system model including the diesel generator system, energy storage system, propulsion system, service load system, and photovoltaic generation system is established. Taking the nonlinear and non-convex constraints in solving power generation scheduling and speed scheduling problems into account, an improved genetic algorithm-based bi-level energy optimization strategy is developed. Considering the mileage constraints in coupling constraints, an upper level model for ship energy scheduling is established with the objective of reducing fuel consumption; a lower level optimization model with the goal of minimizing mileage deviation is established through constraint decomposition and fed back to the upper level optimization model. Considering the normal and fault navigation conditions, simulation results verify that the proposed method can significantly minimize operating costs and greenhouse gas emissions by 5.33% and 2.46%, respectively.
{"title":"A novel bi-level optimization model-based optimal energy scheduling for hybrid ship power system","authors":"Xinyu Wang, Zibin Li, Xiaoyuan Luo, Shaoping Chang, Hongyu Zhu, Xinping Guan, Shuzheng Wang","doi":"10.1557/s43581-023-00068-w","DOIUrl":"https://doi.org/10.1557/s43581-023-00068-w","url":null,"abstract":"With the rapid growth of energy consumption and greenhouse gas emissions, the application of traditional ships brings more and more serious pollution problems to the marine environment. For this reason, this paper aims at developing a novel optimal energy scheduling for hybrid ship power system based on bi-level optimization model to reduce fossil fuel consumption and protect the environment. Firstly, a hybrid ship power system model including the diesel generator system, energy storage system, propulsion system, service load system, and photovoltaic generation system is established. Taking the nonlinear and non-convex constraints in solving power generation scheduling and speed scheduling problems into account, an improved genetic algorithm-based bi-level energy optimization strategy is developed. Considering the mileage constraints in coupling constraints, an upper level model for ship energy scheduling is established with the objective of reducing fuel consumption; a lower level optimization model with the goal of minimizing mileage deviation is established through constraint decomposition and fed back to the upper level optimization model. Considering the normal and fault navigation conditions, simulation results verify that the proposed method can significantly minimize operating costs and greenhouse gas emissions by 5.33% and 2.46%, respectively.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135061179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy is essential in our daily lives to increase human development, which leads to economic growth and productivity. In recent national development plans and policies, numerous nations have prioritized sustainable energy storage. To promote sustainable energy use, energy storage systems are being deployed to store excess energy generated from renewable sources. Energy storage provides a cost-efficient solution to boost total energy efficiency by modulating the timing and location of electric energy generation and consumption. The purpose of this study is to present an overview of energy storage methods, uses, and recent developments. The emphasis is on power industry-relevant, environmentally friendly energy storage options. It discusses the various energy storage options available, including batteries, flywheels, thermal storage, pumped hydro storage, and many others. It also discusses how these technologies are used in the power sector and their benefits and drawbacks. The utilization of a Vanadium Redox Flow Battery in hybrid propulsion systems for marine applications, as well as the creation of a high energy density portable/mobile hydrogen energy storage system with an electrolyzer, a metal hydride, and a fuel cell are both covered in detail with a case study. The difficulties and prospects of each system, as well as the potential for further growth, are covered in detail in two case studies. The results of this study suggest that these technologies can be viable alternatives to traditional fuel sources, especially in remote areas and applications where the need for low-emission, unwavering, and cost-efficient energy storage is critical. Graphical abstract
{"title":"Energy storage techniques, applications, and recent trends: A sustainable solution for power storage","authors":"Parth Vaghela, Vaishnavi Pandey, Anirbid Sircar, Kriti Yadav, Namrata Bist, Roshni Kumari","doi":"10.1557/s43581-023-00069-9","DOIUrl":"https://doi.org/10.1557/s43581-023-00069-9","url":null,"abstract":"Energy is essential in our daily lives to increase human development, which leads to economic growth and productivity. In recent national development plans and policies, numerous nations have prioritized sustainable energy storage. To promote sustainable energy use, energy storage systems are being deployed to store excess energy generated from renewable sources. Energy storage provides a cost-efficient solution to boost total energy efficiency by modulating the timing and location of electric energy generation and consumption. The purpose of this study is to present an overview of energy storage methods, uses, and recent developments. The emphasis is on power industry-relevant, environmentally friendly energy storage options. It discusses the various energy storage options available, including batteries, flywheels, thermal storage, pumped hydro storage, and many others. It also discusses how these technologies are used in the power sector and their benefits and drawbacks. The utilization of a Vanadium Redox Flow Battery in hybrid propulsion systems for marine applications, as well as the creation of a high energy density portable/mobile hydrogen energy storage system with an electrolyzer, a metal hydride, and a fuel cell are both covered in detail with a case study. The difficulties and prospects of each system, as well as the potential for further growth, are covered in detail in two case studies. The results of this study suggest that these technologies can be viable alternatives to traditional fuel sources, especially in remote areas and applications where the need for low-emission, unwavering, and cost-efficient energy storage is critical. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12DOI: 10.1557/s43581-023-00067-x
Sunil Kumar, R. N. Rai, Darshan Singh, Anees A. Ansari, Youngil Lee, Laxman Singh
Electrode functionalization (shape-selective materials) has transformed the energy storage and production technology in the modern age of developing Batteries science. Sodium-ion batteries are promising electrochemical energy supply system suitable alternative to Li-ion batteries, particularly for low cost, earth abundance Na ion, high structural stability, and better functioning behavior at cooler temperatures. In Na-ion batteries (NIBs), lowest potential electrode (negative electrode) act as primary charge carrier and thermodynamically susceptible to reduce alkali Na +. However, conventional anode material suffers from volume variation and stability issues. Quantum dots (QDs) size (1–10 nm) supported nanofiber (1D) functions as high rate redox-active materials due to synergistic interaction and structural confinement effect. Present perspective shed light on various structural interactions, thermodynamic interactions and interfaces which may lower the energy barrier (activation energy) during electrode electrochemical performance. Quantum dots provide functional sites in nanofiber resulting in expansion of Na+ storage and sodiation reaction. Thus, structural and chemical variation unveil future research for high capacity, robust Na+ storage, and better thermodynamic stability of fibrous Na-ion anode materials to upgrade the futuristic electrode technology.
{"title":"Future perspectives on QDs embedded nano-fibrous materials as high capacity sustainable anode for Na-ion batteries technology","authors":"Sunil Kumar, R. N. Rai, Darshan Singh, Anees A. Ansari, Youngil Lee, Laxman Singh","doi":"10.1557/s43581-023-00067-x","DOIUrl":"https://doi.org/10.1557/s43581-023-00067-x","url":null,"abstract":"Electrode functionalization (shape-selective materials) has transformed the energy storage and production technology in the modern age of developing Batteries science. Sodium-ion batteries are promising electrochemical energy supply system suitable alternative to Li-ion batteries, particularly for low cost, earth abundance Na ion, high structural stability, and better functioning behavior at cooler temperatures. In Na-ion batteries (NIBs), lowest potential electrode (negative electrode) act as primary charge carrier and thermodynamically susceptible to reduce alkali Na +. However, conventional anode material suffers from volume variation and stability issues. Quantum dots (QDs) size (1–10 nm) supported nanofiber (1D) functions as high rate redox-active materials due to synergistic interaction and structural confinement effect. Present perspective shed light on various structural interactions, thermodynamic interactions and interfaces which may lower the energy barrier (activation energy) during electrode electrochemical performance. Quantum dots provide functional sites in nanofiber resulting in expansion of Na+ storage and sodiation reaction. Thus, structural and chemical variation unveil future research for high capacity, robust Na+ storage, and better thermodynamic stability of fibrous Na-ion anode materials to upgrade the futuristic electrode technology.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135878972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-25DOI: 10.1557/s43581-023-00065-z
Ching-Feng Chen
This paper determines which floating photovoltaic (FPV) commerce investment is more favorable for Taiwan’s Agongdian Reservoir or Japan’s Yamakura Dam integrating time-series forecasting, analytical network process (ANP), and financial analyses. Although much literature is associated with the FPV environmental impact, energy generation, and photovoltaic (PV) units on water, there needs to be more discourse on comparative economic analysis in optimal schemes to help investors make decisions. The finances of various countries cannot support long-term renewable energy development, especially after the happenings of the epidemic, the Russian–Ukrainian war, extreme environment, inflation, and interest rate hike in the USA. The results reveal that the metrics impacting FPV deployment scales are system capacity, installation cost, bank rate, and emissions trading systems (ETSs) and electricity bills with weights of 0.23, 0.23, 0.12, and 0.42, respectively. In the post-feed-in tariff (FIT) era, investing in Japan is more favorable than in Taiwan as the former’s net present value (NPV) is promising (7269.8, at a discount rate of 5%). The internal rate of return (IRR), 10.1%, the benefit-cost ratio (BCR), 1.71 at a discount of 5%, and the breakpoint point, 55.2%, are affirmative. The approach proposed in the study benefits stakeholders’ decision-making while funding a project. Floating photovoltaic (FPV) deployment Floating photovoltaic (FPV) deployment
{"title":"A holistic method for determining floating photovoltaic schemes","authors":"Ching-Feng Chen","doi":"10.1557/s43581-023-00065-z","DOIUrl":"https://doi.org/10.1557/s43581-023-00065-z","url":null,"abstract":"This paper determines which floating photovoltaic (FPV) commerce investment is more favorable for Taiwan’s Agongdian Reservoir or Japan’s Yamakura Dam integrating time-series forecasting, analytical network process (ANP), and financial analyses. Although much literature is associated with the FPV environmental impact, energy generation, and photovoltaic (PV) units on water, there needs to be more discourse on comparative economic analysis in optimal schemes to help investors make decisions. The finances of various countries cannot support long-term renewable energy development, especially after the happenings of the epidemic, the Russian–Ukrainian war, extreme environment, inflation, and interest rate hike in the USA. The results reveal that the metrics impacting FPV deployment scales are system capacity, installation cost, bank rate, and emissions trading systems (ETSs) and electricity bills with weights of 0.23, 0.23, 0.12, and 0.42, respectively. In the post-feed-in tariff (FIT) era, investing in Japan is more favorable than in Taiwan as the former’s net present value (NPV) is promising (7269.8, at a discount rate of 5%). The internal rate of return (IRR), 10.1%, the benefit-cost ratio (BCR), 1.71 at a discount of 5%, and the breakpoint point, 55.2%, are affirmative. The approach proposed in the study benefits stakeholders’ decision-making while funding a project. Floating photovoltaic (FPV) deployment Floating photovoltaic (FPV) deployment","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"10 1","pages":"207 - 218"},"PeriodicalIF":4.3,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44641200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-10DOI: 10.1557/s43581-023-00066-y
Rohit Pawar, Sourav Santara, A. Sircar, R. Kumari, N. Bist, K. Yadav
Geothermal fluids have the potential as important sources of precious minerals and metals. There are several hydrometallurgical techniques by which geothermal fluid solutions can be processed to extract and purify metals and minerals such as potassium, manganese, zinc, and lithium. The primary methods for extraction of salt and base metals from geothermal water include precipitation, electrodialysis, reverse osmosis, adsorption, electrochemical intercalation, and ion exchange. Among several methods discussed so far membrane and adsorption methods can be one of the suitable methods for extraction of salt and base metals, respectively. The article also summarizes various mathematical modeling used to study dynamic behavior and kinetics of column adsorption. The three most widely used column models, i.e., Thomas, BDST, and Yoon–Nelson are discussed herein, that help to estimate the adsorption capacity and intensity giving an overview of mechanism and forces responsible for column sorption process. The elaborate discussion on mechanistic forces and factors responsible for metal extraction by sorption makes this review significant and preferable. Therefore, the article aims to provide deep insights and a quick overview of salt and base metal sources, their extraction processes, column sorption dynamics, kinetic modeling, and mechanisms in one sight. Work flow for Base metal Extraction from geothermal water.
{"title":"Extraction of salt and base metals from geothermal water: Kinetic modeling and mechanism","authors":"Rohit Pawar, Sourav Santara, A. Sircar, R. Kumari, N. Bist, K. Yadav","doi":"10.1557/s43581-023-00066-y","DOIUrl":"https://doi.org/10.1557/s43581-023-00066-y","url":null,"abstract":"Geothermal fluids have the potential as important sources of precious minerals and metals. There are several hydrometallurgical techniques by which geothermal fluid solutions can be processed to extract and purify metals and minerals such as potassium, manganese, zinc, and lithium. The primary methods for extraction of salt and base metals from geothermal water include precipitation, electrodialysis, reverse osmosis, adsorption, electrochemical intercalation, and ion exchange. Among several methods discussed so far membrane and adsorption methods can be one of the suitable methods for extraction of salt and base metals, respectively. The article also summarizes various mathematical modeling used to study dynamic behavior and kinetics of column adsorption. The three most widely used column models, i.e., Thomas, BDST, and Yoon–Nelson are discussed herein, that help to estimate the adsorption capacity and intensity giving an overview of mechanism and forces responsible for column sorption process. The elaborate discussion on mechanistic forces and factors responsible for metal extraction by sorption makes this review significant and preferable. Therefore, the article aims to provide deep insights and a quick overview of salt and base metal sources, their extraction processes, column sorption dynamics, kinetic modeling, and mechanisms in one sight. Work flow for Base metal Extraction from geothermal water.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"10 1","pages":"219 - 237"},"PeriodicalIF":4.3,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47992410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.1557/s43581-023-00064-0
V. Pandey, A. Sircar, K. Yadav, N. Bist
Globally, communities are converting to renewable energy because of the negative effects of fossil fuels. In 2020, renewable energy sources provided about 29% of the world's primary energy. However, the intermittent nature of renewable power, calls for substantial energy storage. Pumped storage hydropower is the most dependable and widely used option for large-scale energy storage. This study discusses working, types, advantages and drawbacks, and global and national scenarios of pumped storage schemes. It discusses global leaders in pumped hydropower storage such as China and the USA and the current status of India in Pumped storage capacity. The study also highlights major pumped storage schemes of India and their contribution to total hydropower generation capacity. The study also discusses the possibilities for high-capacity pumped storage schemes (> 1000 MW) in India going forward with Agencies like the New & Renewable Energy Development Corporation of Andhra Pradesh and the Water Resource Department. Graphical Abstract
{"title":"Pumped hydro storage for intermittent renewable energy: Present status and future potential in India","authors":"V. Pandey, A. Sircar, K. Yadav, N. Bist","doi":"10.1557/s43581-023-00064-0","DOIUrl":"https://doi.org/10.1557/s43581-023-00064-0","url":null,"abstract":"Globally, communities are converting to renewable energy because of the negative effects of fossil fuels. In 2020, renewable energy sources provided about 29% of the world's primary energy. However, the intermittent nature of renewable power, calls for substantial energy storage. Pumped storage hydropower is the most dependable and widely used option for large-scale energy storage. This study discusses working, types, advantages and drawbacks, and global and national scenarios of pumped storage schemes. It discusses global leaders in pumped hydropower storage such as China and the USA and the current status of India in Pumped storage capacity. The study also highlights major pumped storage schemes of India and their contribution to total hydropower generation capacity. The study also discusses the possibilities for high-capacity pumped storage schemes (> 1000 MW) in India going forward with Agencies like the New & Renewable Energy Development Corporation of Andhra Pradesh and the Water Resource Department. Graphical Abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"1 1","pages":"1-18"},"PeriodicalIF":4.3,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48718530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}