一种利用累积振幅比及其动态变化对煤孔隙系统进行分类的方法

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Greenhouse Gases: Science and Technology Pub Date : 2023-07-26 DOI:10.1002/ghg.2240
Mingjun Zou, Ningbo Cai, Keying Wang, Zibin Ding, Linlin Yao
{"title":"一种利用累积振幅比及其动态变化对煤孔隙系统进行分类的方法","authors":"Mingjun Zou,&nbsp;Ningbo Cai,&nbsp;Keying Wang,&nbsp;Zibin Ding,&nbsp;Linlin Yao","doi":"10.1002/ghg.2240","DOIUrl":null,"url":null,"abstract":"<p>As coal pore development is decisive for choosing the engineering site and predicting the CO<sub>2</sub> storage capacity, this paper provides a new method to define the double <i>T<sub>2</sub></i> cutoff values by using cumulative amplitude ratio measured by nuclear magnetic resonance measurements, classifies the coal pore systems, and analyzes the influences on cumulative amplitude ratio. The following cognitions are achieved. The minimum ratio always varies narrowly and ranges from 0.9 to 1.1, which is quite stable and approximately equals to 1. Ranges of maximum and average ratios are 1.2–3.5 and 1.1–1.8, respectively. <i>T</i><sub>2</sub><i><sub>c</sub></i><sub>1</sub> represents the dividing point of diffusion pore and permeation pore, and its average value is about 4.1 ms. <i>T</i><sub>2</sub><i><sub>c</sub></i><sub>2</sub> represents the dividing point of permeation pore and cleat, with an average value of about 81.9 ms. The volumetric proportions of diffusion pore range from 1.5% to 76.2%, with an average value of 34.6%; the volumetric proportions of permeation pore are from 14.9% to 98.5%, with an average of 46.8%; while the volumetric proportions of cleat are between 8.4% and 57.5%, with an average of 26.6%. According to the different influencing degrees on maximum and average ratios, three types of parameters can be divided. The first type is strong correlation parameters and includes permeability, volumetric percentage of cleat, and relative volumetric percentage of cleat. The second type is medium correlation parameters, such as volumetric percentage of diffusion pore. The third type is weak correlation parameters, including <i>T</i><sub>2</sub> cutoff values, porosity, and maximum vitrinite reflectance. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 5","pages":"721-731"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method to classify coal pore system by using cumulative amplitude ratio and its dynamic variation\",\"authors\":\"Mingjun Zou,&nbsp;Ningbo Cai,&nbsp;Keying Wang,&nbsp;Zibin Ding,&nbsp;Linlin Yao\",\"doi\":\"10.1002/ghg.2240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As coal pore development is decisive for choosing the engineering site and predicting the CO<sub>2</sub> storage capacity, this paper provides a new method to define the double <i>T<sub>2</sub></i> cutoff values by using cumulative amplitude ratio measured by nuclear magnetic resonance measurements, classifies the coal pore systems, and analyzes the influences on cumulative amplitude ratio. The following cognitions are achieved. The minimum ratio always varies narrowly and ranges from 0.9 to 1.1, which is quite stable and approximately equals to 1. Ranges of maximum and average ratios are 1.2–3.5 and 1.1–1.8, respectively. <i>T</i><sub>2</sub><i><sub>c</sub></i><sub>1</sub> represents the dividing point of diffusion pore and permeation pore, and its average value is about 4.1 ms. <i>T</i><sub>2</sub><i><sub>c</sub></i><sub>2</sub> represents the dividing point of permeation pore and cleat, with an average value of about 81.9 ms. The volumetric proportions of diffusion pore range from 1.5% to 76.2%, with an average value of 34.6%; the volumetric proportions of permeation pore are from 14.9% to 98.5%, with an average of 46.8%; while the volumetric proportions of cleat are between 8.4% and 57.5%, with an average of 26.6%. According to the different influencing degrees on maximum and average ratios, three types of parameters can be divided. The first type is strong correlation parameters and includes permeability, volumetric percentage of cleat, and relative volumetric percentage of cleat. The second type is medium correlation parameters, such as volumetric percentage of diffusion pore. The third type is weak correlation parameters, including <i>T</i><sub>2</sub> cutoff values, porosity, and maximum vitrinite reflectance. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"13 5\",\"pages\":\"721-731\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2240\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2240","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于煤孔隙发育对工程选址和预测CO2储存量具有决定性作用,本文提出了利用核磁共振测量的累积振幅比确定双T2截止值的新方法,并对煤孔隙系统进行了分类,分析了对累积振幅比的影响。实现了以下认识。最小比值变化很小,在0.9 ~ 1.1之间,相当稳定,近似等于1。比值最大值为1.2-3.5,平均值为1.1-1.8。T2c1为扩散孔与渗透孔的分割点,其平均值约为4.1 ms。T2c2为渗透孔与透孔的分界点,平均值约为81.9 ms。扩散孔的体积占比为1.5% ~ 76.2%,平均值为34.6%;渗透孔体积占比为14.9% ~ 98.5%,平均为46.8%;而清净的体积比例在8.4% ~ 57.5%之间,平均为26.6%。根据对最大比和平均比的影响程度不同,可分为三类参数。第一类为强相关参数,包括渗透率、净土体积百分比和净土相对体积百分比。第二类是介质相关参数,如扩散孔体积百分比。第三类是弱相关参数,包括T2截止值、孔隙度和最大镜质组反射率。©2023化学工业协会和John Wiley &儿子,有限公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method to classify coal pore system by using cumulative amplitude ratio and its dynamic variation

As coal pore development is decisive for choosing the engineering site and predicting the CO2 storage capacity, this paper provides a new method to define the double T2 cutoff values by using cumulative amplitude ratio measured by nuclear magnetic resonance measurements, classifies the coal pore systems, and analyzes the influences on cumulative amplitude ratio. The following cognitions are achieved. The minimum ratio always varies narrowly and ranges from 0.9 to 1.1, which is quite stable and approximately equals to 1. Ranges of maximum and average ratios are 1.2–3.5 and 1.1–1.8, respectively. T2c1 represents the dividing point of diffusion pore and permeation pore, and its average value is about 4.1 ms. T2c2 represents the dividing point of permeation pore and cleat, with an average value of about 81.9 ms. The volumetric proportions of diffusion pore range from 1.5% to 76.2%, with an average value of 34.6%; the volumetric proportions of permeation pore are from 14.9% to 98.5%, with an average of 46.8%; while the volumetric proportions of cleat are between 8.4% and 57.5%, with an average of 26.6%. According to the different influencing degrees on maximum and average ratios, three types of parameters can be divided. The first type is strong correlation parameters and includes permeability, volumetric percentage of cleat, and relative volumetric percentage of cleat. The second type is medium correlation parameters, such as volumetric percentage of diffusion pore. The third type is weak correlation parameters, including T2 cutoff values, porosity, and maximum vitrinite reflectance. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
期刊最新文献
Issue Information Core-flooding experiments of various concentrations of CO2/N2 mixture in different rocks: II. Effect of rock properties on residual water Development of a multicomponent counter-current flow model to evaluate the impact of oxygen and water vapor on CO2 removal performance in a hollow fiber membrane contactor Invasion percolation & basin modelling for CCS site screening and characterization A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1