考虑雾霾影响的极值梯度增强算法逐时太阳辐射预报模型

Q1 Engineering Energy and Built Environment Pub Date : 2023-08-07 DOI:10.1016/j.enbenv.2023.08.001
{"title":"考虑雾霾影响的极值梯度增强算法逐时太阳辐射预报模型","authors":"","doi":"10.1016/j.enbenv.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Hourly global solar radiation data is an important factor for solar energy utilization. Due to the lack of solar radiation observation stations in many areas, some hourly solar radiation models are proposed to predict hourly solar radiation. However, the existing models perform poorly in heavy fog-haze areas because the weakening effect of fog-haze on solar radiation is not considered. Thus, in this paper, hourly global solar radiation prediction models are developed considering air quality index (AQI) using XGBoost algorithm. The results show a general improvement in the accuracy of models with AQI as an additional input (Model B1-B6) compared to models that do not consider AQI (Model A1-A6). Compared to Model A, Model B have an increase in R value from 0.927 to 0.948, a decrease in RMSE value from 0.300 to 0.282 and a decrease in MAPE value from 0.159 to 0.145. In addition, for hourly solar radiation prediction, the six most important inputs are the day of the year, air temperature difference, surface temperature difference, hour, AQI, and total cloud cover.</p></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 1","pages":"Pages 18-26"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666123323000764/pdfft?md5=1a7fe2131f7a5198c299a95b14c22447&pid=1-s2.0-S2666123323000764-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An hourly solar radiation prediction model using eXtreme gradient boosting algorithm with the effect of fog-haze\",\"authors\":\"\",\"doi\":\"10.1016/j.enbenv.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hourly global solar radiation data is an important factor for solar energy utilization. Due to the lack of solar radiation observation stations in many areas, some hourly solar radiation models are proposed to predict hourly solar radiation. However, the existing models perform poorly in heavy fog-haze areas because the weakening effect of fog-haze on solar radiation is not considered. Thus, in this paper, hourly global solar radiation prediction models are developed considering air quality index (AQI) using XGBoost algorithm. The results show a general improvement in the accuracy of models with AQI as an additional input (Model B1-B6) compared to models that do not consider AQI (Model A1-A6). Compared to Model A, Model B have an increase in R value from 0.927 to 0.948, a decrease in RMSE value from 0.300 to 0.282 and a decrease in MAPE value from 0.159 to 0.145. In addition, for hourly solar radiation prediction, the six most important inputs are the day of the year, air temperature difference, surface temperature difference, hour, AQI, and total cloud cover.</p></div>\",\"PeriodicalId\":33659,\"journal\":{\"name\":\"Energy and Built Environment\",\"volume\":\"6 1\",\"pages\":\"Pages 18-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666123323000764/pdfft?md5=1a7fe2131f7a5198c299a95b14c22447&pid=1-s2.0-S2666123323000764-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666123323000764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123323000764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

全球每小时太阳辐射数据是太阳能利用的一个重要因素。由于许多地区缺乏太阳辐射观测站,人们提出了一些每小时太阳辐射模型来预测每小时太阳辐射。然而,由于没有考虑雾霾对太阳辐射的削弱作用,现有模型在雾霾严重地区表现不佳。因此,本文使用 XGBoost 算法开发了考虑空气质量指数(AQI)的每小时全球太阳辐射预测模型。结果表明,与不考虑空气质量指数的模型(模型 A1-A6)相比,将空气质量指数作为额外输入的模型(模型 B1-B6)精度普遍提高。与模型 A 相比,模型 B 的 R 值从 0.927 增至 0.948,RMSE 值从 0.300 降至 0.282,MAPE 值从 0.159 降至 0.145。此外,在每小时太阳辐射预测中,最重要的六个输入值是年月日、空气温差、地表温差、小时、空气质量指数和总云量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An hourly solar radiation prediction model using eXtreme gradient boosting algorithm with the effect of fog-haze

Hourly global solar radiation data is an important factor for solar energy utilization. Due to the lack of solar radiation observation stations in many areas, some hourly solar radiation models are proposed to predict hourly solar radiation. However, the existing models perform poorly in heavy fog-haze areas because the weakening effect of fog-haze on solar radiation is not considered. Thus, in this paper, hourly global solar radiation prediction models are developed considering air quality index (AQI) using XGBoost algorithm. The results show a general improvement in the accuracy of models with AQI as an additional input (Model B1-B6) compared to models that do not consider AQI (Model A1-A6). Compared to Model A, Model B have an increase in R value from 0.927 to 0.948, a decrease in RMSE value from 0.300 to 0.282 and a decrease in MAPE value from 0.159 to 0.145. In addition, for hourly solar radiation prediction, the six most important inputs are the day of the year, air temperature difference, surface temperature difference, hour, AQI, and total cloud cover.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
期刊最新文献
Editorial Board Editorial Board Editorial Board Overview of the application status and development trends of hydropower and geothermal power in New Zealand Study on the Deposition Characteristics of Fine Particles at Local Components in Air Conditioning Ventilation Ducts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1