Yang Zhou, Feng Xu, Ying Liu, Mingshan Ye, Zhigang Wang, Yuxin Zhao
{"title":"磁加热相变多模式超声造影剂的制备及体外成像","authors":"Yang Zhou, Feng Xu, Ying Liu, Mingshan Ye, Zhigang Wang, Yuxin Zhao","doi":"10.3760/CMA.J.ISSN.1004-4477.2020.01.014","DOIUrl":null,"url":null,"abstract":"Objective \nTo prepare a novel magnetic heating phasetransition nanoparticle contrast agent (PFH-HIONS), and to study its performance on enhancing photoacoustic imaging, magnetic resonance imaging and ultrasound imaging after phasetransition by magnetic-thermo in vitro. \n \n \nMethods \nFirstly, the superparamagnetic nano hollow iron spheres (HIONS) were prepared by a one-pot solvothermal method, and then the phasetransition liquid perfluorocarbon (PFH) was loaded on the HIONS by vacuum adsorption to obtain PFH-HIONS. After characterization of the nanoparticles, photoacoustic imaging, magnetic resonance imaging and ultrasound imaging after phasetransition with magnetic-thermo were performed in vitro, and the results were analyzed by a software. \n \n \nResults \nPFH-HIONS was successfully prepared with uniform particle size of (537.3±24.8)nm. PFH-HIONS could apparently enhance photoacoustic imaging and magnetic resonance imaging in vitro. In an alternating magnetic field, it could significantly increase the temperature, which promotes phasetransion of the PFH to produce microbubbles, thereby enhancing ultrasound imaging. Furthermore, as the concentration increased, the imaging intensity was enhanced, and the differences in imaging intensity between different concentration groups were statistically significant (P<0.05). \n \n \nConclusions \nThe PFH-HIONS can enhance the multimodal imaging including ultrasound, photoacoustic and magnetic resonance, and it also has obvious magnetic heating performance. It provides a new and efficient research platform for theranostics based on molecular imaging, therefore it has promising application prospects. \n \n \nKey words: \nMagnetic heating; Phasetransition; Contrast agent; Multimodal","PeriodicalId":10224,"journal":{"name":"中华超声影像学杂志","volume":"29 1","pages":"77-82"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and in vitro imaging of a magnetic heating phasetransition multimodal ultrasound contrast agent\",\"authors\":\"Yang Zhou, Feng Xu, Ying Liu, Mingshan Ye, Zhigang Wang, Yuxin Zhao\",\"doi\":\"10.3760/CMA.J.ISSN.1004-4477.2020.01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective \\nTo prepare a novel magnetic heating phasetransition nanoparticle contrast agent (PFH-HIONS), and to study its performance on enhancing photoacoustic imaging, magnetic resonance imaging and ultrasound imaging after phasetransition by magnetic-thermo in vitro. \\n \\n \\nMethods \\nFirstly, the superparamagnetic nano hollow iron spheres (HIONS) were prepared by a one-pot solvothermal method, and then the phasetransition liquid perfluorocarbon (PFH) was loaded on the HIONS by vacuum adsorption to obtain PFH-HIONS. After characterization of the nanoparticles, photoacoustic imaging, magnetic resonance imaging and ultrasound imaging after phasetransition with magnetic-thermo were performed in vitro, and the results were analyzed by a software. \\n \\n \\nResults \\nPFH-HIONS was successfully prepared with uniform particle size of (537.3±24.8)nm. PFH-HIONS could apparently enhance photoacoustic imaging and magnetic resonance imaging in vitro. In an alternating magnetic field, it could significantly increase the temperature, which promotes phasetransion of the PFH to produce microbubbles, thereby enhancing ultrasound imaging. Furthermore, as the concentration increased, the imaging intensity was enhanced, and the differences in imaging intensity between different concentration groups were statistically significant (P<0.05). \\n \\n \\nConclusions \\nThe PFH-HIONS can enhance the multimodal imaging including ultrasound, photoacoustic and magnetic resonance, and it also has obvious magnetic heating performance. It provides a new and efficient research platform for theranostics based on molecular imaging, therefore it has promising application prospects. \\n \\n \\nKey words: \\nMagnetic heating; Phasetransition; Contrast agent; Multimodal\",\"PeriodicalId\":10224,\"journal\":{\"name\":\"中华超声影像学杂志\",\"volume\":\"29 1\",\"pages\":\"77-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华超声影像学杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/CMA.J.ISSN.1004-4477.2020.01.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华超声影像学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.1004-4477.2020.01.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Preparation and in vitro imaging of a magnetic heating phasetransition multimodal ultrasound contrast agent
Objective
To prepare a novel magnetic heating phasetransition nanoparticle contrast agent (PFH-HIONS), and to study its performance on enhancing photoacoustic imaging, magnetic resonance imaging and ultrasound imaging after phasetransition by magnetic-thermo in vitro.
Methods
Firstly, the superparamagnetic nano hollow iron spheres (HIONS) were prepared by a one-pot solvothermal method, and then the phasetransition liquid perfluorocarbon (PFH) was loaded on the HIONS by vacuum adsorption to obtain PFH-HIONS. After characterization of the nanoparticles, photoacoustic imaging, magnetic resonance imaging and ultrasound imaging after phasetransition with magnetic-thermo were performed in vitro, and the results were analyzed by a software.
Results
PFH-HIONS was successfully prepared with uniform particle size of (537.3±24.8)nm. PFH-HIONS could apparently enhance photoacoustic imaging and magnetic resonance imaging in vitro. In an alternating magnetic field, it could significantly increase the temperature, which promotes phasetransion of the PFH to produce microbubbles, thereby enhancing ultrasound imaging. Furthermore, as the concentration increased, the imaging intensity was enhanced, and the differences in imaging intensity between different concentration groups were statistically significant (P<0.05).
Conclusions
The PFH-HIONS can enhance the multimodal imaging including ultrasound, photoacoustic and magnetic resonance, and it also has obvious magnetic heating performance. It provides a new and efficient research platform for theranostics based on molecular imaging, therefore it has promising application prospects.
Key words:
Magnetic heating; Phasetransition; Contrast agent; Multimodal