N. N. Grinchik, G. Zayats, O. Boiprav, K. V. Dobrego, Volha A. Prykhodzka
{"title":"分形粗糙表面电磁场的纳米聚焦规律","authors":"N. N. Grinchik, G. Zayats, O. Boiprav, K. V. Dobrego, Volha A. Prykhodzka","doi":"10.4236/jemaa.2019.118008","DOIUrl":null,"url":null,"abstract":"A consistent physical and mathematical model of the propagation of electromagnetic waves in an inhomogeneous medium with strong discontinuities of the electromagnetic field at the interface of two media, which is a rough surface, was developed. Mathematical modeling of rough surfaces and their profiles was carried out using fractal geometry, which allows us to display the topology of the object as close as possible to reality. For real heterogeneous rough structures, we have developed a through-counting method that takes into account the continuity of the total current at the interfaces of adjacent media, the effect of induced surface charge and surface current. This approach lets one avoid the necessity to set surface impedances depending on the structure of the field being determined and on the material properties.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularities of Nanofocusing of the Electromagnetic Field of a Fractal Rough Surface\",\"authors\":\"N. N. Grinchik, G. Zayats, O. Boiprav, K. V. Dobrego, Volha A. Prykhodzka\",\"doi\":\"10.4236/jemaa.2019.118008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A consistent physical and mathematical model of the propagation of electromagnetic waves in an inhomogeneous medium with strong discontinuities of the electromagnetic field at the interface of two media, which is a rough surface, was developed. Mathematical modeling of rough surfaces and their profiles was carried out using fractal geometry, which allows us to display the topology of the object as close as possible to reality. For real heterogeneous rough structures, we have developed a through-counting method that takes into account the continuity of the total current at the interfaces of adjacent media, the effect of induced surface charge and surface current. This approach lets one avoid the necessity to set surface impedances depending on the structure of the field being determined and on the material properties.\",\"PeriodicalId\":58231,\"journal\":{\"name\":\"电磁分析与应用期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电磁分析与应用期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/jemaa.2019.118008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jemaa.2019.118008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regularities of Nanofocusing of the Electromagnetic Field of a Fractal Rough Surface
A consistent physical and mathematical model of the propagation of electromagnetic waves in an inhomogeneous medium with strong discontinuities of the electromagnetic field at the interface of two media, which is a rough surface, was developed. Mathematical modeling of rough surfaces and their profiles was carried out using fractal geometry, which allows us to display the topology of the object as close as possible to reality. For real heterogeneous rough structures, we have developed a through-counting method that takes into account the continuity of the total current at the interfaces of adjacent media, the effect of induced surface charge and surface current. This approach lets one avoid the necessity to set surface impedances depending on the structure of the field being determined and on the material properties.