瞬态电子器件破坏机制的设计、仿真与实验验证

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Active and Passive Electronic Components Pub Date : 2020-12-30 DOI:10.1155/2020/8898943
Yu Xiao, Zhengyuan Zhang, Xiyi Liao, F. Jiang, Yan Wang
{"title":"瞬态电子器件破坏机制的设计、仿真与实验验证","authors":"Yu Xiao, Zhengyuan Zhang, Xiyi Liao, F. Jiang, Yan Wang","doi":"10.1155/2020/8898943","DOIUrl":null,"url":null,"abstract":"To quickly destroy electronic devices and ensure information security, a destruction mechanism of transient electronic devices was designed in this paper. By placing the Ni-Cr film resistance and the energetic material between the chip and the package and heating the resistance by an electric current, the energetic material expanded and the chip cracked. The information on the chip was destroyed. The author simulated the temperature distribution and stress of the power-on structure in different sizes by ANSYS software. The simulation results indicate that the chip cracks within 50 ms under the trigger current of 0.5 A when a circular groove with an area of 1 mm2 and depth of 0.1 mm is filled with an expansion material with an expansion coefficient of 10−5°C−1. Then, the author prepared a sample for experimental verification. Experimental results show that the sample chip quickly cracks and fails within 10 ms under the trigger current of 1 A. The simulation and experimental results confirm the feasibility of the structure in quick destruction, which lays the foundation for developing instantaneous-failure integrated circuit products to meet information security applications.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Simulation, and Experimental Verification of a Destruction Mechanism of Transient Electronic Devices\",\"authors\":\"Yu Xiao, Zhengyuan Zhang, Xiyi Liao, F. Jiang, Yan Wang\",\"doi\":\"10.1155/2020/8898943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To quickly destroy electronic devices and ensure information security, a destruction mechanism of transient electronic devices was designed in this paper. By placing the Ni-Cr film resistance and the energetic material between the chip and the package and heating the resistance by an electric current, the energetic material expanded and the chip cracked. The information on the chip was destroyed. The author simulated the temperature distribution and stress of the power-on structure in different sizes by ANSYS software. The simulation results indicate that the chip cracks within 50 ms under the trigger current of 0.5 A when a circular groove with an area of 1 mm2 and depth of 0.1 mm is filled with an expansion material with an expansion coefficient of 10−5°C−1. Then, the author prepared a sample for experimental verification. Experimental results show that the sample chip quickly cracks and fails within 10 ms under the trigger current of 1 A. The simulation and experimental results confirm the feasibility of the structure in quick destruction, which lays the foundation for developing instantaneous-failure integrated circuit products to meet information security applications.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8898943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8898943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了快速销毁电子设备,保证信息安全,本文设计了一种瞬态电子设备销毁机制。通过在芯片和封装之间放置镍铬薄膜电阻和含能材料,并通过电流加热电阻,含能材料膨胀,芯片开裂。芯片上的信息被毁了。利用ANSYS软件对不同尺寸的通电结构进行了温度分布和应力模拟。仿真结果表明,在0.5 A的触发电流下,在面积为1mm2、深度为0.1 mm的圆槽内填充膨胀系数为10−5°C−1的膨胀材料,芯片在50ms内发生裂纹。然后制备样品进行实验验证。实验结果表明,在1 A的触发电流下,样品芯片在10ms内迅速开裂失效。仿真和实验结果验证了该结构在快速破坏下的可行性,为开发满足信息安全应用的瞬时失效集成电路产品奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, Simulation, and Experimental Verification of a Destruction Mechanism of Transient Electronic Devices
To quickly destroy electronic devices and ensure information security, a destruction mechanism of transient electronic devices was designed in this paper. By placing the Ni-Cr film resistance and the energetic material between the chip and the package and heating the resistance by an electric current, the energetic material expanded and the chip cracked. The information on the chip was destroyed. The author simulated the temperature distribution and stress of the power-on structure in different sizes by ANSYS software. The simulation results indicate that the chip cracks within 50 ms under the trigger current of 0.5 A when a circular groove with an area of 1 mm2 and depth of 0.1 mm is filled with an expansion material with an expansion coefficient of 10−5°C−1. Then, the author prepared a sample for experimental verification. Experimental results show that the sample chip quickly cracks and fails within 10 ms under the trigger current of 1 A. The simulation and experimental results confirm the feasibility of the structure in quick destruction, which lays the foundation for developing instantaneous-failure integrated circuit products to meet information security applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
期刊最新文献
Design of a Microwave Quadrature Hybrid Coupler with Harmonic Suppression Using Artificial Neural Networks Research on Equivalent Circuit Model of HVDC Valve and Calculation of Thyristor Junction Temperature Analysis and Design of High-Energy-Efficiency Amplifiers for Delta-Sigma Modulators An Ameliorated Small-Signal Model Parameter Extraction Method for GaN HEMTs up to 110 GHz with Short-Test Structure A Low Threshold Voltage Ultradynamic Voltage Scaling SRAM Write Assist Technique for High-Speed Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1