{"title":"碳纳米点的激发依赖发射机制","authors":"Manisha Mondal , Subhamay Pramanik","doi":"10.1016/j.mlblux.2023.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon nanodots (CDs) synthesized via the microwave pyrolysis approach are monodisperse with the nano-size distribution. The CDs show color tunability simply by changing the excitation wavelength. Also, the emission intensity varies with varying different microwave response times. Detail characterizations indicate that the carbon defects that lead to heterogeneous emission levels are responsible for the emission properties of the CDs.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"18 ","pages":"Article 100195"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mechanism for excitation-dependent emission from carbon nanodots\",\"authors\":\"Manisha Mondal , Subhamay Pramanik\",\"doi\":\"10.1016/j.mlblux.2023.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon nanodots (CDs) synthesized via the microwave pyrolysis approach are monodisperse with the nano-size distribution. The CDs show color tunability simply by changing the excitation wavelength. Also, the emission intensity varies with varying different microwave response times. Detail characterizations indicate that the carbon defects that lead to heterogeneous emission levels are responsible for the emission properties of the CDs.</p></div>\",\"PeriodicalId\":18245,\"journal\":{\"name\":\"Materials Letters: X\",\"volume\":\"18 \",\"pages\":\"Article 100195\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590150823000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150823000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A mechanism for excitation-dependent emission from carbon nanodots
Carbon nanodots (CDs) synthesized via the microwave pyrolysis approach are monodisperse with the nano-size distribution. The CDs show color tunability simply by changing the excitation wavelength. Also, the emission intensity varies with varying different microwave response times. Detail characterizations indicate that the carbon defects that lead to heterogeneous emission levels are responsible for the emission properties of the CDs.