{"title":"通过自然裂缝地热储层的流动模拟,陶普岛火山带,新西兰","authors":"Warwick M. Kissling, Cécile Massiot","doi":"10.1186/s40517-023-00262-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Numerous fractures are observed in fractured geothermal reservoirs on borehole images in the Taupō Volcanic Zone (TVZ), Aotearoa New Zealand. These fractures are necessary to explain the sustained reservoir permeabilities despite the low matrix porosity. However, conventional continuum models do not adequately represent fluid flow through these fractured rocks.</p><h3>Methods</h3><p>We present new Discrete Fracture Network (DFN) codes that model fractures and associated fluid flow in 2-D at reservoir scales to represent typical rock types found in TVZ reservoirs. Input parameters are derived from interpretations of borehole images at the Rotokawa and Wairakei geothermal fields where fractures have high dip magnitudes (> 60–70°). This paper focuses on the effect of fracture density along virtual boreholes (P<sub>10</sub>), that is in average 0.6 m<sup>−1</sup> in sheet-like andesites; 0.8 m<sup>−1</sup> in ignimbrites and 1.7 m<sup>−1</sup> in rhyolite lavas.</p><h3>Results</h3><p>The number of fractures in the models scale linearly with the input P<sub>10</sub> in virtual boreholes. The percolation threshold, where the backbone of fractures is connected across the entire model domain, is reached for P<sub>10</sub> > 0.24 m<sup>−1</sup>. Above this threshold, mean flow measured along the mean fracture direction scales linearly with P<sub>10</sub>. For P<sub>10</sub> > 0.4 m<sup>−1</sup> the permeability anisotropy lies in the interval 13 ± 3, with the scatter decreasing as P<sub>10</sub> increases. The pressure distributions in individual DFN realisations are highly variable, but averages of 50 realisations converge towards those given by equivalent continuum models. Probability density functions resulting from DFN realisations can therefore be used to constrain continuum models. Tracing of fluid particles through the DFN shows that particles can take numerous pathways to define a swath of paths. The travel time of particles over 1 km follows a distribution similar to real tracer tests, with arrivals peaking at 1–2 days and a long tail stretching to over 200 days.</p><h3>Conclusions</h3><p>The new codes, calibrated to real measurements of fracture geometries in borehole images of the TVZ, reproduce patterns of flows in fractured geothermal systems. Mean flows and permeability anisotropies derived from the DFNs can be used to improve modelling of flows through fractured geothermal reservoirs using continuum models at a limited computational cost.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00262-6","citationCount":"0","resultStr":"{\"title\":\"Modelling of flow through naturally fractured geothermal reservoirs, Taupō Volcanic Zone, New Zealand\",\"authors\":\"Warwick M. Kissling, Cécile Massiot\",\"doi\":\"10.1186/s40517-023-00262-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Numerous fractures are observed in fractured geothermal reservoirs on borehole images in the Taupō Volcanic Zone (TVZ), Aotearoa New Zealand. These fractures are necessary to explain the sustained reservoir permeabilities despite the low matrix porosity. However, conventional continuum models do not adequately represent fluid flow through these fractured rocks.</p><h3>Methods</h3><p>We present new Discrete Fracture Network (DFN) codes that model fractures and associated fluid flow in 2-D at reservoir scales to represent typical rock types found in TVZ reservoirs. Input parameters are derived from interpretations of borehole images at the Rotokawa and Wairakei geothermal fields where fractures have high dip magnitudes (> 60–70°). This paper focuses on the effect of fracture density along virtual boreholes (P<sub>10</sub>), that is in average 0.6 m<sup>−1</sup> in sheet-like andesites; 0.8 m<sup>−1</sup> in ignimbrites and 1.7 m<sup>−1</sup> in rhyolite lavas.</p><h3>Results</h3><p>The number of fractures in the models scale linearly with the input P<sub>10</sub> in virtual boreholes. The percolation threshold, where the backbone of fractures is connected across the entire model domain, is reached for P<sub>10</sub> > 0.24 m<sup>−1</sup>. Above this threshold, mean flow measured along the mean fracture direction scales linearly with P<sub>10</sub>. For P<sub>10</sub> > 0.4 m<sup>−1</sup> the permeability anisotropy lies in the interval 13 ± 3, with the scatter decreasing as P<sub>10</sub> increases. The pressure distributions in individual DFN realisations are highly variable, but averages of 50 realisations converge towards those given by equivalent continuum models. Probability density functions resulting from DFN realisations can therefore be used to constrain continuum models. Tracing of fluid particles through the DFN shows that particles can take numerous pathways to define a swath of paths. The travel time of particles over 1 km follows a distribution similar to real tracer tests, with arrivals peaking at 1–2 days and a long tail stretching to over 200 days.</p><h3>Conclusions</h3><p>The new codes, calibrated to real measurements of fracture geometries in borehole images of the TVZ, reproduce patterns of flows in fractured geothermal systems. Mean flows and permeability anisotropies derived from the DFNs can be used to improve modelling of flows through fractured geothermal reservoirs using continuum models at a limited computational cost.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00262-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-023-00262-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00262-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modelling of flow through naturally fractured geothermal reservoirs, Taupō Volcanic Zone, New Zealand
Background
Numerous fractures are observed in fractured geothermal reservoirs on borehole images in the Taupō Volcanic Zone (TVZ), Aotearoa New Zealand. These fractures are necessary to explain the sustained reservoir permeabilities despite the low matrix porosity. However, conventional continuum models do not adequately represent fluid flow through these fractured rocks.
Methods
We present new Discrete Fracture Network (DFN) codes that model fractures and associated fluid flow in 2-D at reservoir scales to represent typical rock types found in TVZ reservoirs. Input parameters are derived from interpretations of borehole images at the Rotokawa and Wairakei geothermal fields where fractures have high dip magnitudes (> 60–70°). This paper focuses on the effect of fracture density along virtual boreholes (P10), that is in average 0.6 m−1 in sheet-like andesites; 0.8 m−1 in ignimbrites and 1.7 m−1 in rhyolite lavas.
Results
The number of fractures in the models scale linearly with the input P10 in virtual boreholes. The percolation threshold, where the backbone of fractures is connected across the entire model domain, is reached for P10 > 0.24 m−1. Above this threshold, mean flow measured along the mean fracture direction scales linearly with P10. For P10 > 0.4 m−1 the permeability anisotropy lies in the interval 13 ± 3, with the scatter decreasing as P10 increases. The pressure distributions in individual DFN realisations are highly variable, but averages of 50 realisations converge towards those given by equivalent continuum models. Probability density functions resulting from DFN realisations can therefore be used to constrain continuum models. Tracing of fluid particles through the DFN shows that particles can take numerous pathways to define a swath of paths. The travel time of particles over 1 km follows a distribution similar to real tracer tests, with arrivals peaking at 1–2 days and a long tail stretching to over 200 days.
Conclusions
The new codes, calibrated to real measurements of fracture geometries in borehole images of the TVZ, reproduce patterns of flows in fractured geothermal systems. Mean flows and permeability anisotropies derived from the DFNs can be used to improve modelling of flows through fractured geothermal reservoirs using continuum models at a limited computational cost.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.