Tola A. Mirza, S. Kalaitzidis, Sardar S. Fatah, Sophia Tsiotou
{"title":"伊拉克库尔德斯坦地区Gole地区Gimo大理岩的岩石学地球化学特征:对其原岩成因和沉积环境的制约","authors":"Tola A. Mirza, S. Kalaitzidis, Sardar S. Fatah, Sophia Tsiotou","doi":"10.15446/ESRJ.V25N3.88686","DOIUrl":null,"url":null,"abstract":"It is essential to identify marbles' petrographic and geochemical characteristics to determine the palaeo-environmental settings where their carbonate protoliths formed. The petrogenesis of massive Gimo marbles in the Gole area, Kurdistan Region of northeast Iraq, was investigated in this study through a combination of field mapping, petrographic, and geochemical techniques. Petrographic examination of these marbles reveals that mineral compositions are similar in all samples, with both homeoblastic and mosaic textures occurring, in addition to opaque grains that provide evidence of mineralization. Geochemical analyses show that the average calcium carbonate content of the marble is 94.96%; hence, the marble is lithologically characterized as a pure calcite marble. In most samples, the silica content was below 2 wt.%, with high values related to quartz veinlets. A range of geochemical indices and Post-Archean Australian Shale (PAAS–normalized rare earth element (REE) patterns) suggest that the limestone protolith was deposited in a shallow, near-shore marine environment on a continental margin, with very low input of detrital material. The negative Ce anomalies indicate that the protoliths of the Gimo marbles were carbonate rocks of a sedimentary origin.","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith's origin and depositional environment\",\"authors\":\"Tola A. Mirza, S. Kalaitzidis, Sardar S. Fatah, Sophia Tsiotou\",\"doi\":\"10.15446/ESRJ.V25N3.88686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is essential to identify marbles' petrographic and geochemical characteristics to determine the palaeo-environmental settings where their carbonate protoliths formed. The petrogenesis of massive Gimo marbles in the Gole area, Kurdistan Region of northeast Iraq, was investigated in this study through a combination of field mapping, petrographic, and geochemical techniques. Petrographic examination of these marbles reveals that mineral compositions are similar in all samples, with both homeoblastic and mosaic textures occurring, in addition to opaque grains that provide evidence of mineralization. Geochemical analyses show that the average calcium carbonate content of the marble is 94.96%; hence, the marble is lithologically characterized as a pure calcite marble. In most samples, the silica content was below 2 wt.%, with high values related to quartz veinlets. A range of geochemical indices and Post-Archean Australian Shale (PAAS–normalized rare earth element (REE) patterns) suggest that the limestone protolith was deposited in a shallow, near-shore marine environment on a continental margin, with very low input of detrital material. The negative Ce anomalies indicate that the protoliths of the Gimo marbles were carbonate rocks of a sedimentary origin.\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/ESRJ.V25N3.88686\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/ESRJ.V25N3.88686","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith's origin and depositional environment
It is essential to identify marbles' petrographic and geochemical characteristics to determine the palaeo-environmental settings where their carbonate protoliths formed. The petrogenesis of massive Gimo marbles in the Gole area, Kurdistan Region of northeast Iraq, was investigated in this study through a combination of field mapping, petrographic, and geochemical techniques. Petrographic examination of these marbles reveals that mineral compositions are similar in all samples, with both homeoblastic and mosaic textures occurring, in addition to opaque grains that provide evidence of mineralization. Geochemical analyses show that the average calcium carbonate content of the marble is 94.96%; hence, the marble is lithologically characterized as a pure calcite marble. In most samples, the silica content was below 2 wt.%, with high values related to quartz veinlets. A range of geochemical indices and Post-Archean Australian Shale (PAAS–normalized rare earth element (REE) patterns) suggest that the limestone protolith was deposited in a shallow, near-shore marine environment on a continental margin, with very low input of detrital material. The negative Ce anomalies indicate that the protoliths of the Gimo marbles were carbonate rocks of a sedimentary origin.
期刊介绍:
ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications.
Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors.
We gladly consider manuscripts in the following subject areas:
-Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods.
-Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards.
-Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems.
-Basic Sciences and Computer Science applied to Geology and Geophysics.
-Meteorology and Atmospheric Sciences.
-Oceanography.
-Planetary Sciences.
-Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.