动态协方差矩阵估计与高频数据组合分析

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2023-02-10 DOI:10.1093/jjfinec/nbad003
Binyan Jiang, Cheng Liu, C. Tang
{"title":"动态协方差矩阵估计与高频数据组合分析","authors":"Binyan Jiang, Cheng Liu, C. Tang","doi":"10.1093/jjfinec/nbad003","DOIUrl":null,"url":null,"abstract":"\n The covariance matrix associated with multiple financial returns plays foundational roles in many empirical applications, for example, quantifying risks and managing investment portfolios. Such covariance matrices are well known to be dynamic, that is, their structures change with the underlying market conditions. To incorporate such dynamics in a setting with high-frequency noisy data contaminated by measurement errors, we propose a new approach for estimating the covariances of a high-dimensional return series. By utilizing an appropriate localization, our approach is designed upon exploiting generic variables that are informative in accounting for the dynamic changes. We then investigate the properties and performance of the high-dimensional minimal-variance sparse portfolio constructed from employing the proposed dynamic covariance estimator. Our theory establishes the validity of the proposed covariance estimation methods in handling high-dimensional, high-frequency noisy data. The promising applications of our methods are demonstrated by extensive simulations and empirical studies showing the satisfactory accuracy of the covariance estimation and the substantially improved portfolio performance.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Covariance Matrix Estimation and Portfolio Analysis with High-Frequency Data\",\"authors\":\"Binyan Jiang, Cheng Liu, C. Tang\",\"doi\":\"10.1093/jjfinec/nbad003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The covariance matrix associated with multiple financial returns plays foundational roles in many empirical applications, for example, quantifying risks and managing investment portfolios. Such covariance matrices are well known to be dynamic, that is, their structures change with the underlying market conditions. To incorporate such dynamics in a setting with high-frequency noisy data contaminated by measurement errors, we propose a new approach for estimating the covariances of a high-dimensional return series. By utilizing an appropriate localization, our approach is designed upon exploiting generic variables that are informative in accounting for the dynamic changes. We then investigate the properties and performance of the high-dimensional minimal-variance sparse portfolio constructed from employing the proposed dynamic covariance estimator. Our theory establishes the validity of the proposed covariance estimation methods in handling high-dimensional, high-frequency noisy data. The promising applications of our methods are demonstrated by extensive simulations and empirical studies showing the satisfactory accuracy of the covariance estimation and the substantially improved portfolio performance.\",\"PeriodicalId\":47596,\"journal\":{\"name\":\"Journal of Financial Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/jjfinec/nbad003\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbad003","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

与多个财务收益相关的协方差矩阵在许多实证应用中起着基础作用,例如量化风险和管理投资组合。众所周知,这种协方差矩阵是动态的,也就是说,它们的结构随着潜在的市场条件而变化。为了将这种动态与受测量误差污染的高频噪声数据相结合,我们提出了一种估计高维回归序列协方差的新方法。通过利用适当的本地化,我们的方法是在利用在考虑动态变化时提供信息的通用变量的基础上设计的。然后,我们研究了利用所提出的动态协方差估计构造的高维最小方差稀疏投资组合的性质和性能。我们的理论证明了所提出的协方差估计方法在处理高维、高频噪声数据时的有效性。大量的模拟和实证研究表明,我们的方法具有良好的应用前景,表明协方差估计的准确性令人满意,并大大提高了投资组合的绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Covariance Matrix Estimation and Portfolio Analysis with High-Frequency Data
The covariance matrix associated with multiple financial returns plays foundational roles in many empirical applications, for example, quantifying risks and managing investment portfolios. Such covariance matrices are well known to be dynamic, that is, their structures change with the underlying market conditions. To incorporate such dynamics in a setting with high-frequency noisy data contaminated by measurement errors, we propose a new approach for estimating the covariances of a high-dimensional return series. By utilizing an appropriate localization, our approach is designed upon exploiting generic variables that are informative in accounting for the dynamic changes. We then investigate the properties and performance of the high-dimensional minimal-variance sparse portfolio constructed from employing the proposed dynamic covariance estimator. Our theory establishes the validity of the proposed covariance estimation methods in handling high-dimensional, high-frequency noisy data. The promising applications of our methods are demonstrated by extensive simulations and empirical studies showing the satisfactory accuracy of the covariance estimation and the substantially improved portfolio performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1