从行政登记推断常住人口的知识发现

IF 1.4 3区 社会学 Q3 DEMOGRAPHY Mathematical Population Studies Pub Date : 2018-07-27 DOI:10.1080/08898480.2017.1418114
Angela Chieppa, G. Gallo, Valeria Tomeo, Francesco Borrelli, S. Di Domenico
{"title":"从行政登记推断常住人口的知识发现","authors":"Angela Chieppa, G. Gallo, Valeria Tomeo, Francesco Borrelli, S. Di Domenico","doi":"10.1080/08898480.2017.1418114","DOIUrl":null,"url":null,"abstract":"ABSTRACT From 2018 onward, the population census in Italy will leave the traditional “door-to-door” enumeration for a “register-based” system combining administrative data and surveys. An integrated system of registers makes it possible to identify patterns and groups among huge amounts of administrative data. The Italian National Institute of Statistics (Istat) carried out a trial to compute the usually resident population by using administrative data and identify patterns, leading to classify individuals and constitute groups, in order to prepare the register-based census.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"26 1","pages":"92 - 106"},"PeriodicalIF":1.4000,"publicationDate":"2018-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2017.1418114","citationCount":"4","resultStr":"{\"title\":\"Knowledge discovery for inferring the usually resident population from administrative registers\",\"authors\":\"Angela Chieppa, G. Gallo, Valeria Tomeo, Francesco Borrelli, S. Di Domenico\",\"doi\":\"10.1080/08898480.2017.1418114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT From 2018 onward, the population census in Italy will leave the traditional “door-to-door” enumeration for a “register-based” system combining administrative data and surveys. An integrated system of registers makes it possible to identify patterns and groups among huge amounts of administrative data. The Italian National Institute of Statistics (Istat) carried out a trial to compute the usually resident population by using administrative data and identify patterns, leading to classify individuals and constitute groups, in order to prepare the register-based census.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"26 1\",\"pages\":\"92 - 106\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2018-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08898480.2017.1418114\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2017.1418114\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2017.1418114","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 4

摘要

从2018年开始,意大利的人口普查将不再采用传统的“挨家挨户”的统计方式,而是采用结合行政数据和调查的“基于登记册”的系统。一个综合的登记系统使得在大量的行政数据中识别模式和分组成为可能。意大利国家统计研究所(Istat)进行了一项试验,利用行政数据计算通常居住的人口,并查明模式,从而对个人进行分类并构成群体,以便编制基于登记册的人口普查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge discovery for inferring the usually resident population from administrative registers
ABSTRACT From 2018 onward, the population census in Italy will leave the traditional “door-to-door” enumeration for a “register-based” system combining administrative data and surveys. An integrated system of registers makes it possible to identify patterns and groups among huge amounts of administrative data. The Italian National Institute of Statistics (Istat) carried out a trial to compute the usually resident population by using administrative data and identify patterns, leading to classify individuals and constitute groups, in order to prepare the register-based census.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
期刊最新文献
Researching algorithm awareness: methodological approaches to investigate how people perceive, know, and interact with algorithms Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data Estimating the structure by age and sex of the US sexually active population Optimizing criterion for the upper limit of the signal response of brain neurons Optimal estimators of the population mean of a skewed distribution using auxiliary variables in median ranked-set sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1