Anton van Beek, A. Giuntoli, Nitin K. Hansoge, S. Keten, Wei Chen
{"title":"基于不确定性量化决策支持的半参数函数校准","authors":"Anton van Beek, A. Giuntoli, Nitin K. Hansoge, S. Keten, Wei Chen","doi":"10.1115/1.4062694","DOIUrl":null,"url":null,"abstract":"\n While most calibration methods focus on inferring a set of model parameters that are unknown but assumed to be constant, many models have parameters that have a functional relation with the controllable input variables. Formulating a low-dimensional approximation of these calibration functions allows modelers to use low-fidelity models to explore phenomena at lengths and time scales unattainable with their high-fidelity sources. While functional calibration methods are available for low-dimensional problems (e.g., one to three unknown calibration functions), exploring high-dimensional spaces of unknown calibration functions (e.g., more than ten) is still a challenging task due to its computational cost and the risk for identifiability issues. To address this challenge, we introduce a semiparametric calibration method that uses an approximate Bayesian computation scheme to quantify the uncertainty in the unknown calibration functions and uses this insight to identify what functions can be replaced with low-dimensional approximations. Through a test problem and a coarse-grained model of an epoxy resin, we demonstrate that the introduced method enables the identification of a low-dimensional set of calibration functions with a limited compromise in calibration accuracy. The novelty of the presented method is the ability to synthesize domain knowledge from various sources (i.e., physical experiments, simulation models, and expert insight) to enable high-dimensional functional calibration without the need for prior knowledge on the class of unknown calibration functions.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Parametric Functional Calibration Using Uncertainty Quantification Based Decision Support\",\"authors\":\"Anton van Beek, A. Giuntoli, Nitin K. Hansoge, S. Keten, Wei Chen\",\"doi\":\"10.1115/1.4062694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While most calibration methods focus on inferring a set of model parameters that are unknown but assumed to be constant, many models have parameters that have a functional relation with the controllable input variables. Formulating a low-dimensional approximation of these calibration functions allows modelers to use low-fidelity models to explore phenomena at lengths and time scales unattainable with their high-fidelity sources. While functional calibration methods are available for low-dimensional problems (e.g., one to three unknown calibration functions), exploring high-dimensional spaces of unknown calibration functions (e.g., more than ten) is still a challenging task due to its computational cost and the risk for identifiability issues. To address this challenge, we introduce a semiparametric calibration method that uses an approximate Bayesian computation scheme to quantify the uncertainty in the unknown calibration functions and uses this insight to identify what functions can be replaced with low-dimensional approximations. Through a test problem and a coarse-grained model of an epoxy resin, we demonstrate that the introduced method enables the identification of a low-dimensional set of calibration functions with a limited compromise in calibration accuracy. The novelty of the presented method is the ability to synthesize domain knowledge from various sources (i.e., physical experiments, simulation models, and expert insight) to enable high-dimensional functional calibration without the need for prior knowledge on the class of unknown calibration functions.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Semi-Parametric Functional Calibration Using Uncertainty Quantification Based Decision Support
While most calibration methods focus on inferring a set of model parameters that are unknown but assumed to be constant, many models have parameters that have a functional relation with the controllable input variables. Formulating a low-dimensional approximation of these calibration functions allows modelers to use low-fidelity models to explore phenomena at lengths and time scales unattainable with their high-fidelity sources. While functional calibration methods are available for low-dimensional problems (e.g., one to three unknown calibration functions), exploring high-dimensional spaces of unknown calibration functions (e.g., more than ten) is still a challenging task due to its computational cost and the risk for identifiability issues. To address this challenge, we introduce a semiparametric calibration method that uses an approximate Bayesian computation scheme to quantify the uncertainty in the unknown calibration functions and uses this insight to identify what functions can be replaced with low-dimensional approximations. Through a test problem and a coarse-grained model of an epoxy resin, we demonstrate that the introduced method enables the identification of a low-dimensional set of calibration functions with a limited compromise in calibration accuracy. The novelty of the presented method is the ability to synthesize domain knowledge from various sources (i.e., physical experiments, simulation models, and expert insight) to enable high-dimensional functional calibration without the need for prior knowledge on the class of unknown calibration functions.