Pengbo Sun, Zhijun Wang, Ning Yuan, Qiang Lu, Lin Sun, Yuyu Li, Jiawei Zhang, Yuhan Zhang, G. Ge, Yushan Jia
{"title":"苜蓿(Medicago sativa L.)纳米硒生物强化特性评价","authors":"Pengbo Sun, Zhijun Wang, Ning Yuan, Qiang Lu, Lin Sun, Yuyu Li, Jiawei Zhang, Yuhan Zhang, G. Ge, Yushan Jia","doi":"10.1515/gps-2022-8121","DOIUrl":null,"url":null,"abstract":"Abstract Selenium (Se) is indispensable for animals and humans. One option to address Se deficiency is to biofortify plants with Se. Biofortification of forage with Se nanoparticles (NPs) is gaining more attention as an efficient and safe source of Se for livestock. The purpose of this study was to investigate the effect of different concentrations of NPs-Se (0, 30, 50, 100, 150, and 250 mg·L−1) on the growth of alfalfa harvested multiple times, and to provide a basis for the production of Se-enriched forages. Applying 50 mg·L−1 concentration of NPs-Se had the best effect on yield over three harvests. Over three harvests, low-dose NPs-Se (30 and 50 mg·L−1) application significantly increased peroxidase and superoxide dismutase activities, chlorophyll content and carotenoid content, and significantly decreased malondialdehyde content. The total Se content and Se accumulation in plants at the same harvest showed an upward trend with increasing Se concentration. At the same concentration, from first harvest to third harvest, Se content and Se accumulation showed an initially increasing and then decreasing trend. The evaluation found that foliar application of NPs-Se at 50 mg·L−1 could have the greatest positive effect on the growth and yield of multiple-harvested alfalfa.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of nano-selenium biofortification characteristics of alfalfa (Medicago sativa L.)\",\"authors\":\"Pengbo Sun, Zhijun Wang, Ning Yuan, Qiang Lu, Lin Sun, Yuyu Li, Jiawei Zhang, Yuhan Zhang, G. Ge, Yushan Jia\",\"doi\":\"10.1515/gps-2022-8121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Selenium (Se) is indispensable for animals and humans. One option to address Se deficiency is to biofortify plants with Se. Biofortification of forage with Se nanoparticles (NPs) is gaining more attention as an efficient and safe source of Se for livestock. The purpose of this study was to investigate the effect of different concentrations of NPs-Se (0, 30, 50, 100, 150, and 250 mg·L−1) on the growth of alfalfa harvested multiple times, and to provide a basis for the production of Se-enriched forages. Applying 50 mg·L−1 concentration of NPs-Se had the best effect on yield over three harvests. Over three harvests, low-dose NPs-Se (30 and 50 mg·L−1) application significantly increased peroxidase and superoxide dismutase activities, chlorophyll content and carotenoid content, and significantly decreased malondialdehyde content. The total Se content and Se accumulation in plants at the same harvest showed an upward trend with increasing Se concentration. At the same concentration, from first harvest to third harvest, Se content and Se accumulation showed an initially increasing and then decreasing trend. The evaluation found that foliar application of NPs-Se at 50 mg·L−1 could have the greatest positive effect on the growth and yield of multiple-harvested alfalfa.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of nano-selenium biofortification characteristics of alfalfa (Medicago sativa L.)
Abstract Selenium (Se) is indispensable for animals and humans. One option to address Se deficiency is to biofortify plants with Se. Biofortification of forage with Se nanoparticles (NPs) is gaining more attention as an efficient and safe source of Se for livestock. The purpose of this study was to investigate the effect of different concentrations of NPs-Se (0, 30, 50, 100, 150, and 250 mg·L−1) on the growth of alfalfa harvested multiple times, and to provide a basis for the production of Se-enriched forages. Applying 50 mg·L−1 concentration of NPs-Se had the best effect on yield over three harvests. Over three harvests, low-dose NPs-Se (30 and 50 mg·L−1) application significantly increased peroxidase and superoxide dismutase activities, chlorophyll content and carotenoid content, and significantly decreased malondialdehyde content. The total Se content and Se accumulation in plants at the same harvest showed an upward trend with increasing Se concentration. At the same concentration, from first harvest to third harvest, Se content and Se accumulation showed an initially increasing and then decreasing trend. The evaluation found that foliar application of NPs-Se at 50 mg·L−1 could have the greatest positive effect on the growth and yield of multiple-harvested alfalfa.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.