利用无损光谱技术作为快速筛选方法预测大麦青贮饲料中不消化纤维含量的评价:FTIR与NIR的比较

IF 1 4区 农林科学 Q3 AGRONOMY Canadian Journal of Plant Science Pub Date : 2022-08-17 DOI:10.1139/cjps-2022-0054
B. Refat, P. Yu
{"title":"利用无损光谱技术作为快速筛选方法预测大麦青贮饲料中不消化纤维含量的评价:FTIR与NIR的比较","authors":"B. Refat, P. Yu","doi":"10.1139/cjps-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this study was to reveal the potential of using Fourier transform mid-infrared (FTIR) and near infrared (NIR) spectroscopy as tools for the determination of indigestible neutral (NDF) fraction (iNDF) of whole-crop barley silage. A total of 48 whole-crop barley silage samples collected from 48 different farms in Western Canada were analyzed for iNDF. Reference values were matched with NIR and FTIR spectra. Spectral data processing (pretreatments) included first derivative, standard normal variate, multiplicative scattering correction, second derivative, and orthogonal signal correction. Prediction equations were obtained from each model using an external validation set. The coefficient of determination for the external validation of iNDF was 0.62 for FTIR and 0.41 for NIR, while the corresponding ratio performance deviation was 1.69 and 1.38 for FTIR and NIR, respectively. Results from this research showed the high potential of applying infrared molecular spectroscopy for the examination of forage plant fiber digestibility. More studies are needed to improve the accuracy and performance of FTIR and NIR spectroscopies in predicting the iNDF of whole-crop barley silage samples.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"102 1","pages":"1130 - 1138"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of prediction of indigestible fiber fraction (iNDF) of whole-crop barley silage by using non-destructive spectroscopic techniques as a fast-screening method: comparison between FTIR vs. NIR\",\"authors\":\"B. Refat, P. Yu\",\"doi\":\"10.1139/cjps-2022-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this study was to reveal the potential of using Fourier transform mid-infrared (FTIR) and near infrared (NIR) spectroscopy as tools for the determination of indigestible neutral (NDF) fraction (iNDF) of whole-crop barley silage. A total of 48 whole-crop barley silage samples collected from 48 different farms in Western Canada were analyzed for iNDF. Reference values were matched with NIR and FTIR spectra. Spectral data processing (pretreatments) included first derivative, standard normal variate, multiplicative scattering correction, second derivative, and orthogonal signal correction. Prediction equations were obtained from each model using an external validation set. The coefficient of determination for the external validation of iNDF was 0.62 for FTIR and 0.41 for NIR, while the corresponding ratio performance deviation was 1.69 and 1.38 for FTIR and NIR, respectively. Results from this research showed the high potential of applying infrared molecular spectroscopy for the examination of forage plant fiber digestibility. More studies are needed to improve the accuracy and performance of FTIR and NIR spectroscopies in predicting the iNDF of whole-crop barley silage samples.\",\"PeriodicalId\":9530,\"journal\":{\"name\":\"Canadian Journal of Plant Science\",\"volume\":\"102 1\",\"pages\":\"1130 - 1138\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjps-2022-0054\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0054","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究旨在揭示利用傅里叶变换中红外(FTIR)和近红外(NIR)光谱技术测定大麦青贮饲料中不可消化中性(NDF)组分的潜力。从加拿大西部48个不同农场收集的48份大麦青贮饲料样本进行了iNDF分析。参考值与近红外光谱和红外光谱相匹配。光谱数据处理(预处理)包括一阶导数、标准正态变量、乘法散射校正、二阶导数和正交信号校正。使用外部验证集从每个模型中获得预测方程。FTIR和NIR的外部验证决定系数分别为0.62和0.41,FTIR和NIR的比例性能偏差分别为1.69和1.38。研究结果表明,红外分子光谱技术在饲料植物纤维消化率检测中具有广阔的应用前景。FTIR和NIR光谱在预测大麦青贮样品中indef值方面的准确性和性能有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of prediction of indigestible fiber fraction (iNDF) of whole-crop barley silage by using non-destructive spectroscopic techniques as a fast-screening method: comparison between FTIR vs. NIR
Abstract The objective of this study was to reveal the potential of using Fourier transform mid-infrared (FTIR) and near infrared (NIR) spectroscopy as tools for the determination of indigestible neutral (NDF) fraction (iNDF) of whole-crop barley silage. A total of 48 whole-crop barley silage samples collected from 48 different farms in Western Canada were analyzed for iNDF. Reference values were matched with NIR and FTIR spectra. Spectral data processing (pretreatments) included first derivative, standard normal variate, multiplicative scattering correction, second derivative, and orthogonal signal correction. Prediction equations were obtained from each model using an external validation set. The coefficient of determination for the external validation of iNDF was 0.62 for FTIR and 0.41 for NIR, while the corresponding ratio performance deviation was 1.69 and 1.38 for FTIR and NIR, respectively. Results from this research showed the high potential of applying infrared molecular spectroscopy for the examination of forage plant fiber digestibility. More studies are needed to improve the accuracy and performance of FTIR and NIR spectroscopies in predicting the iNDF of whole-crop barley silage samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
期刊最新文献
An intellectual gap in root research on major crops of the Canadian Prairies Seeding rate and sulfur drive field pea yields in the Maritime region of Canada Alfalfa (Medicago sativa L.) quality is improved from tractor traffic implemented during harvest Evaluation of sequential mesotrione application rates and sequential tolpyralate and mesotrione applications for narrow-leaved goldenrod management in lowbush blueberry The potato vine crusher: a new tool for harvest weed seed control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1