{"title":"HVAF喷涂AlCuFe涂层对AA2024合金磨损和腐蚀的防护","authors":"Changliang Wang, Zhang Li, M. Iefimov, B. Mordyuk","doi":"10.1080/02670844.2023.2242116","DOIUrl":null,"url":null,"abstract":"ABSTRACT Quasicrystalline (QC) AlCuFe coating is produced on the AA2024 alloy using high-velocity air-fuel (HVAF) spraying. The HVAF sprayed coatings are studied in as-deposited and subsequently annealed (400°C, 1 h) states. XRD, SEM, and EDX analysis revealed a two-phase microstructure comprising QC icosahedral ψ-phase (the volume fraction of ∼75%) and interlayered bcc β-phase that remains the same as that in a water-atomized AlCuFe powder used as feeding material. The used annealing exerts a negligible effect on the protective properties of the HVAF coating that possesses good adhesion strength (>12 MPa), a high HV microhardness (7.1 ± 0.2 GPa), nanohardness (11.1 ± 0.2 GPa), elastic modulus (169 GPa), the essentially lowered wear losses (0.71 μm), coefficient of friction (CoF≈0.03), and corrosion current density (6.7 μm cm−2) in a 3.5%NaCl medium. These characteristics are much better than those of the original AA2024 alloy.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"532 - 540"},"PeriodicalIF":2.4000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protection of AA2024 alloy against wear and corrosion by HVAF sprayed AlCuFe coating\",\"authors\":\"Changliang Wang, Zhang Li, M. Iefimov, B. Mordyuk\",\"doi\":\"10.1080/02670844.2023.2242116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Quasicrystalline (QC) AlCuFe coating is produced on the AA2024 alloy using high-velocity air-fuel (HVAF) spraying. The HVAF sprayed coatings are studied in as-deposited and subsequently annealed (400°C, 1 h) states. XRD, SEM, and EDX analysis revealed a two-phase microstructure comprising QC icosahedral ψ-phase (the volume fraction of ∼75%) and interlayered bcc β-phase that remains the same as that in a water-atomized AlCuFe powder used as feeding material. The used annealing exerts a negligible effect on the protective properties of the HVAF coating that possesses good adhesion strength (>12 MPa), a high HV microhardness (7.1 ± 0.2 GPa), nanohardness (11.1 ± 0.2 GPa), elastic modulus (169 GPa), the essentially lowered wear losses (0.71 μm), coefficient of friction (CoF≈0.03), and corrosion current density (6.7 μm cm−2) in a 3.5%NaCl medium. These characteristics are much better than those of the original AA2024 alloy.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"39 1\",\"pages\":\"532 - 540\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2242116\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2242116","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Protection of AA2024 alloy against wear and corrosion by HVAF sprayed AlCuFe coating
ABSTRACT Quasicrystalline (QC) AlCuFe coating is produced on the AA2024 alloy using high-velocity air-fuel (HVAF) spraying. The HVAF sprayed coatings are studied in as-deposited and subsequently annealed (400°C, 1 h) states. XRD, SEM, and EDX analysis revealed a two-phase microstructure comprising QC icosahedral ψ-phase (the volume fraction of ∼75%) and interlayered bcc β-phase that remains the same as that in a water-atomized AlCuFe powder used as feeding material. The used annealing exerts a negligible effect on the protective properties of the HVAF coating that possesses good adhesion strength (>12 MPa), a high HV microhardness (7.1 ± 0.2 GPa), nanohardness (11.1 ± 0.2 GPa), elastic modulus (169 GPa), the essentially lowered wear losses (0.71 μm), coefficient of friction (CoF≈0.03), and corrosion current density (6.7 μm cm−2) in a 3.5%NaCl medium. These characteristics are much better than those of the original AA2024 alloy.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.