面向相位感知语音增强的矢量量化变分自编码器

Tuan Vu Ho, Q. Nguyen, M. Akagi, M. Unoki
{"title":"面向相位感知语音增强的矢量量化变分自编码器","authors":"Tuan Vu Ho, Q. Nguyen, M. Akagi, M. Unoki","doi":"10.21437/interspeech.2022-443","DOIUrl":null,"url":null,"abstract":"Speech-enhancement methods based on the complex ideal ratio mask (cIRM) have achieved promising results. These methods often deploy a deep neural network to jointly estimate the real and imaginary components of the cIRM defined in the complex domain. However, the unbounded property of the cIRM poses difficulties when it comes to effectively training a neural network. To alleviate this problem, this paper proposes a phase-aware speech-enhancement method through estimating the magnitude and phase of a complex adaptive Wiener filter. With this method, a noise-robust vector-quantized variational autoencoder is used for estimating the magnitude of the Wiener filter by using the Itakura-Saito divergence on the time-frequency domain, while the phase of the Wiener filter is estimated using a convolutional recurrent network using the scale-invariant signal-to-noise-ratio constraint in the time domain. The proposed method was evaluated on the open Voice Bank+DEMAND dataset to provide a direct comparison with other speech-enhancement methods and achieved a Perceptual Evaluation of Speech Quality score of 2.85 and ShortTime Objective Intelligibility score of 0.94, which is better than the stateof-art method based on cIRM estimation during the 2020 Deep Noise Challenge.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"176-180"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vector-quantized Variational Autoencoder for Phase-aware Speech Enhancement\",\"authors\":\"Tuan Vu Ho, Q. Nguyen, M. Akagi, M. Unoki\",\"doi\":\"10.21437/interspeech.2022-443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech-enhancement methods based on the complex ideal ratio mask (cIRM) have achieved promising results. These methods often deploy a deep neural network to jointly estimate the real and imaginary components of the cIRM defined in the complex domain. However, the unbounded property of the cIRM poses difficulties when it comes to effectively training a neural network. To alleviate this problem, this paper proposes a phase-aware speech-enhancement method through estimating the magnitude and phase of a complex adaptive Wiener filter. With this method, a noise-robust vector-quantized variational autoencoder is used for estimating the magnitude of the Wiener filter by using the Itakura-Saito divergence on the time-frequency domain, while the phase of the Wiener filter is estimated using a convolutional recurrent network using the scale-invariant signal-to-noise-ratio constraint in the time domain. The proposed method was evaluated on the open Voice Bank+DEMAND dataset to provide a direct comparison with other speech-enhancement methods and achieved a Perceptual Evaluation of Speech Quality score of 2.85 and ShortTime Objective Intelligibility score of 0.94, which is better than the stateof-art method based on cIRM estimation during the 2020 Deep Noise Challenge.\",\"PeriodicalId\":73500,\"journal\":{\"name\":\"Interspeech\",\"volume\":\"1 1\",\"pages\":\"176-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interspeech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/interspeech.2022-443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于复理想比掩模(cIRM)的语音增强方法取得了良好的效果。这些方法通常使用深度神经网络来联合估计在复域中定义的cIRM的实分量和虚分量。然而,cIRM的无界特性给有效训练神经网络带来了困难。为了解决这一问题,本文提出了一种相位感知语音增强方法,该方法通过估计复杂自适应维纳滤波器的幅度和相位来实现语音增强。该方法采用抗噪矢量量化变分自编码器,在时频域利用Itakura-Saito散度估计维纳滤波器的幅值,在时域利用尺度不变信噪比约束的卷积循环网络估计维纳滤波器的相位。在开放的Voice Bank+DEMAND数据集上对该方法进行了评估,与其他语音增强方法进行了直接比较,在2020年深度噪声挑战中,该方法的语音质量感知评价得分为2.85,短时间客观可理解性得分为0.94,优于基于cIRM估计的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vector-quantized Variational Autoencoder for Phase-aware Speech Enhancement
Speech-enhancement methods based on the complex ideal ratio mask (cIRM) have achieved promising results. These methods often deploy a deep neural network to jointly estimate the real and imaginary components of the cIRM defined in the complex domain. However, the unbounded property of the cIRM poses difficulties when it comes to effectively training a neural network. To alleviate this problem, this paper proposes a phase-aware speech-enhancement method through estimating the magnitude and phase of a complex adaptive Wiener filter. With this method, a noise-robust vector-quantized variational autoencoder is used for estimating the magnitude of the Wiener filter by using the Itakura-Saito divergence on the time-frequency domain, while the phase of the Wiener filter is estimated using a convolutional recurrent network using the scale-invariant signal-to-noise-ratio constraint in the time domain. The proposed method was evaluated on the open Voice Bank+DEMAND dataset to provide a direct comparison with other speech-enhancement methods and achieved a Perceptual Evaluation of Speech Quality score of 2.85 and ShortTime Objective Intelligibility score of 0.94, which is better than the stateof-art method based on cIRM estimation during the 2020 Deep Noise Challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1