Pusen Wang, Chih-Yun Chen, Hsiang-Chieh Hsu, Mu-Hsin Chang, W. Liu, H. Fang, Ting-Chou Wu, Wen-hao Chen, Chin Cheng Tsai, A. Chen, Yi Yang
{"title":"用于探空火箭和立方体卫星任务的紧凑型闪烁体阵列探测器(ComSAD)","authors":"Pusen Wang, Chih-Yun Chen, Hsiang-Chieh Hsu, Mu-Hsin Chang, W. Liu, H. Fang, Ting-Chou Wu, Wen-hao Chen, Chin Cheng Tsai, A. Chen, Yi Yang","doi":"10.1142/S2251171722500076","DOIUrl":null,"url":null,"abstract":"The development of CubeSats and more frequent launch chances of sounding rockets are a total game changer to the space program, and it allows us to build space instruments that are technologically feasible and a ff ordable. Therefore, it gives us a good opportunity to build a small cosmic-ray detector which has capabilities to measure the flux, direction, and even energy of cosmic rays at an altitude above the limitation of balloon experiments, and it may open a new door for building a constellation of detectors to study cosmic-ray physics. Compact Scintillator Array Detector (ComSAD) is a funded sounding rocket mission of Taiwan’s National Space Organization. In this paper, we present the concept, design, and performance of ComSAD which is also suitable for future CubeSat missions.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Scintillator Array Detector (ComSAD) for sounding rocket and CubeSat missions\",\"authors\":\"Pusen Wang, Chih-Yun Chen, Hsiang-Chieh Hsu, Mu-Hsin Chang, W. Liu, H. Fang, Ting-Chou Wu, Wen-hao Chen, Chin Cheng Tsai, A. Chen, Yi Yang\",\"doi\":\"10.1142/S2251171722500076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of CubeSats and more frequent launch chances of sounding rockets are a total game changer to the space program, and it allows us to build space instruments that are technologically feasible and a ff ordable. Therefore, it gives us a good opportunity to build a small cosmic-ray detector which has capabilities to measure the flux, direction, and even energy of cosmic rays at an altitude above the limitation of balloon experiments, and it may open a new door for building a constellation of detectors to study cosmic-ray physics. Compact Scintillator Array Detector (ComSAD) is a funded sounding rocket mission of Taiwan’s National Space Organization. In this paper, we present the concept, design, and performance of ComSAD which is also suitable for future CubeSat missions.\",\"PeriodicalId\":45132,\"journal\":{\"name\":\"Journal of Astronomical Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251171722500076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171722500076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Compact Scintillator Array Detector (ComSAD) for sounding rocket and CubeSat missions
The development of CubeSats and more frequent launch chances of sounding rockets are a total game changer to the space program, and it allows us to build space instruments that are technologically feasible and a ff ordable. Therefore, it gives us a good opportunity to build a small cosmic-ray detector which has capabilities to measure the flux, direction, and even energy of cosmic rays at an altitude above the limitation of balloon experiments, and it may open a new door for building a constellation of detectors to study cosmic-ray physics. Compact Scintillator Array Detector (ComSAD) is a funded sounding rocket mission of Taiwan’s National Space Organization. In this paper, we present the concept, design, and performance of ComSAD which is also suitable for future CubeSat missions.
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]