{"title":"面向零缺陷制造的多阶段制造过程预测-预防质量控制新方法","authors":"Li-Ping Zhao, Bo-Hao Li, Yi-Yong Yao","doi":"10.1007/s40436-022-00427-9","DOIUrl":null,"url":null,"abstract":"<div><p>Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"280 - 294"},"PeriodicalIF":4.2000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A novel predict-prevention quality control method of multi-stage manufacturing process towards zero defect manufacturing\",\"authors\":\"Li-Ping Zhao, Bo-Hao Li, Yi-Yong Yao\",\"doi\":\"10.1007/s40436-022-00427-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 2\",\"pages\":\"280 - 294\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-022-00427-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00427-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A novel predict-prevention quality control method of multi-stage manufacturing process towards zero defect manufacturing
Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.