{"title":"飞机噪声计算中地面副架的再分配","authors":"Olivier Schwab","doi":"10.1515/noise-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract For aircraft noise calculations, lateral flight dispersion is commonly represented by means of subtracks – a backbone track and side-tracks to each side of the backbone track – where each subtrack is assigned a movement percentage. Aircraft noise calculations impose quality demands on these subtracks, while the latter are often created based on limited information. This paper presents a method to increase flexibility when designing subtracks. The method allows to redistribute subtracks geometrically, allowing for the design of simplified track representations, for instance through a lower number of subtracks and very basic indications of movement allocations. The method is based on the geometric matching of the initial subtracks and on the estimation of the lateral movement distributions for both input and final output subtracks. No restrictions on the number of sub-tracks or on the shape of the distributions are needed, neither for the input nor for the output. A number of examples of the redistribution and its effect on aircraft noise calculations are discussed.","PeriodicalId":44086,"journal":{"name":"Noise Mapping","volume":"7 1","pages":"146 - 153"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/noise-2020-0013","citationCount":"1","resultStr":"{\"title\":\"Redistribution of ground subtracks for aircraft noise calculations\",\"authors\":\"Olivier Schwab\",\"doi\":\"10.1515/noise-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For aircraft noise calculations, lateral flight dispersion is commonly represented by means of subtracks – a backbone track and side-tracks to each side of the backbone track – where each subtrack is assigned a movement percentage. Aircraft noise calculations impose quality demands on these subtracks, while the latter are often created based on limited information. This paper presents a method to increase flexibility when designing subtracks. The method allows to redistribute subtracks geometrically, allowing for the design of simplified track representations, for instance through a lower number of subtracks and very basic indications of movement allocations. The method is based on the geometric matching of the initial subtracks and on the estimation of the lateral movement distributions for both input and final output subtracks. No restrictions on the number of sub-tracks or on the shape of the distributions are needed, neither for the input nor for the output. A number of examples of the redistribution and its effect on aircraft noise calculations are discussed.\",\"PeriodicalId\":44086,\"journal\":{\"name\":\"Noise Mapping\",\"volume\":\"7 1\",\"pages\":\"146 - 153\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/noise-2020-0013\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Mapping\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/noise-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Mapping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/noise-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Redistribution of ground subtracks for aircraft noise calculations
Abstract For aircraft noise calculations, lateral flight dispersion is commonly represented by means of subtracks – a backbone track and side-tracks to each side of the backbone track – where each subtrack is assigned a movement percentage. Aircraft noise calculations impose quality demands on these subtracks, while the latter are often created based on limited information. This paper presents a method to increase flexibility when designing subtracks. The method allows to redistribute subtracks geometrically, allowing for the design of simplified track representations, for instance through a lower number of subtracks and very basic indications of movement allocations. The method is based on the geometric matching of the initial subtracks and on the estimation of the lateral movement distributions for both input and final output subtracks. No restrictions on the number of sub-tracks or on the shape of the distributions are needed, neither for the input nor for the output. A number of examples of the redistribution and its effect on aircraft noise calculations are discussed.
期刊介绍:
Ever since its inception, Noise Mapping has been offering fast and comprehensive peer-review, while featuring prominent researchers among its Advisory Board. As a result, the journal is set to acquire a growing reputation as the main publication in the field of noise mapping, thus leading to a significant Impact Factor. The journal aims to promote and disseminate knowledge on noise mapping through the publication of high quality peer-reviewed papers focusing on the following aspects: noise mapping and noise action plans: case studies; models and algorithms for source characterization and outdoor sound propagation: proposals, applications, comparisons, round robin tests; local, national and international policies and good practices for noise mapping, planning, management and control; evaluation of noise mitigation actions; evaluation of environmental noise exposure; actions and communications to increase public awareness of environmental noise issues; outdoor soundscape studies and mapping; classification, evaluation and preservation of quiet areas.