印度东喜马拉雅印控"阿鲁纳恰尔邦"土地利用系统和海拔对土壤中天然粘土有机复合体碳稳定性的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-07-29 DOI:10.1080/03650340.2023.2241370
A. Tasung, N. Ahmed, R. Das, R. Bhattacharyya, K. Bandyopadhyay, Neera Singh, D. Das, B. Gurung, S. Datta
{"title":"印度东喜马拉雅印控\"阿鲁纳恰尔邦\"土地利用系统和海拔对土壤中天然粘土有机复合体碳稳定性的影响","authors":"A. Tasung, N. Ahmed, R. Das, R. Bhattacharyya, K. Bandyopadhyay, Neera Singh, D. Das, B. Gurung, S. Datta","doi":"10.1080/03650340.2023.2241370","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study assessed the effect of land use systems (rice-fallow, bamboo, mandarin and forest) along an altitude gradient (<500, 500–1000 and > 1000 m asl) and soil depth (0–15, 15–30 and 30–45 cm) on C stability in naturally occurring clay-organic complex (NOCOC) and their relationship with soil properties. The C stability in NOCOC (1/k) was determined from desorption rate constant (k) of humus-C by sequential extraction and was correlated with soil properties across the altitude. The C stability in NOCOC decreased (34%) with increasing soil depth from 0–15 to 30–45 cm. Across the altitudes, highest C stability in NOCOC was at > 1000 m asl (8.37 h) which was 12.7 and 9.4% higher than 500–1000 and < 500 m asl, respectively. Irrespective of soil depth and altitude, forest (5.30 h) showed the greatest C stability in NOCOC followed by mandarin (4.64 h), bamboo (4.20 h) and rice-fallow (3.85 h). Measurable soil properties could explain 90–94% variability of C stability in NOCOC across the altitude. Furthermore, C stability in NOCOC increased macroaggregate formation (0.25 mm) and ensured greater physical, chemical and microbial protection of organic C in soil.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of land use system and altitude on carbon stability in naturally occurring clay-organic complex in soils of Arunachal Pradesh in the Eastern Himalaya, India\",\"authors\":\"A. Tasung, N. Ahmed, R. Das, R. Bhattacharyya, K. Bandyopadhyay, Neera Singh, D. Das, B. Gurung, S. Datta\",\"doi\":\"10.1080/03650340.2023.2241370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study assessed the effect of land use systems (rice-fallow, bamboo, mandarin and forest) along an altitude gradient (<500, 500–1000 and > 1000 m asl) and soil depth (0–15, 15–30 and 30–45 cm) on C stability in naturally occurring clay-organic complex (NOCOC) and their relationship with soil properties. The C stability in NOCOC (1/k) was determined from desorption rate constant (k) of humus-C by sequential extraction and was correlated with soil properties across the altitude. The C stability in NOCOC decreased (34%) with increasing soil depth from 0–15 to 30–45 cm. Across the altitudes, highest C stability in NOCOC was at > 1000 m asl (8.37 h) which was 12.7 and 9.4% higher than 500–1000 and < 500 m asl, respectively. Irrespective of soil depth and altitude, forest (5.30 h) showed the greatest C stability in NOCOC followed by mandarin (4.64 h), bamboo (4.20 h) and rice-fallow (3.85 h). Measurable soil properties could explain 90–94% variability of C stability in NOCOC across the altitude. Furthermore, C stability in NOCOC increased macroaggregate formation (0.25 mm) and ensured greater physical, chemical and microbial protection of organic C in soil.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03650340.2023.2241370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2241370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of land use system and altitude on carbon stability in naturally occurring clay-organic complex in soils of Arunachal Pradesh in the Eastern Himalaya, India
ABSTRACT This study assessed the effect of land use systems (rice-fallow, bamboo, mandarin and forest) along an altitude gradient (<500, 500–1000 and > 1000 m asl) and soil depth (0–15, 15–30 and 30–45 cm) on C stability in naturally occurring clay-organic complex (NOCOC) and their relationship with soil properties. The C stability in NOCOC (1/k) was determined from desorption rate constant (k) of humus-C by sequential extraction and was correlated with soil properties across the altitude. The C stability in NOCOC decreased (34%) with increasing soil depth from 0–15 to 30–45 cm. Across the altitudes, highest C stability in NOCOC was at > 1000 m asl (8.37 h) which was 12.7 and 9.4% higher than 500–1000 and < 500 m asl, respectively. Irrespective of soil depth and altitude, forest (5.30 h) showed the greatest C stability in NOCOC followed by mandarin (4.64 h), bamboo (4.20 h) and rice-fallow (3.85 h). Measurable soil properties could explain 90–94% variability of C stability in NOCOC across the altitude. Furthermore, C stability in NOCOC increased macroaggregate formation (0.25 mm) and ensured greater physical, chemical and microbial protection of organic C in soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1