{"title":"小而强大:被忽视的小物种如何在始新世中期气候变化中维持群落结构","authors":"L. Kearns, S. Bohaty, K. Edgar, T. Ezard","doi":"10.1017/pab.2022.24","DOIUrl":null,"url":null,"abstract":"Abstract. Understanding current and future biodiversity responses to changing climate is pivotal as anthropogenic climate change continues. This understanding is complicated by the multitude of available metrics to quantify dynamics and by biased sampling protocols. Here, we investigate the impact of sampling protocol strategies using a data-rich fossil record to calculate effective diversity using Hill numbers for the first time on Paleogene planktonic foraminifera. We sample 22,830 individual tests, in two different size classes, across a 7 Myr time slice of the middle Eocene featuring a major transient warming event, the middle Eocene climatic optimum (MECO; ∼40 Ma), at study sites in the midlatitude North Atlantic. Using generalized additive models, we investigate community responses to climatic fluctuations. After correcting for any effects of fossil fragmentation, we show a peak in generic diversity in the early and middle stages of the MECO as well as divergent trajectories between the typical size-selected community (>180 µm) and a broader assemblage, including smaller genera (>63 µm). Assemblages featuring smaller genera are more resilient to the climatic fluctuations of the MECO than those assemblages that feature only larger genera, maintaining their community structure at the reference Hill numbers for Shannon's and Simpson's indices. These results raise fundamental questions about how communities respond to climate excursions. In addition, our results emphasize the need to design studies with the aim of collecting the most inclusive data possible to allow detection of community changes and determine which species are likely to dominate future environments.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 1","pages":"77 - 98"},"PeriodicalIF":2.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Small but mighty: how overlooked small species maintain community structure through middle Eocene climate change\",\"authors\":\"L. Kearns, S. Bohaty, K. Edgar, T. Ezard\",\"doi\":\"10.1017/pab.2022.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Understanding current and future biodiversity responses to changing climate is pivotal as anthropogenic climate change continues. This understanding is complicated by the multitude of available metrics to quantify dynamics and by biased sampling protocols. Here, we investigate the impact of sampling protocol strategies using a data-rich fossil record to calculate effective diversity using Hill numbers for the first time on Paleogene planktonic foraminifera. We sample 22,830 individual tests, in two different size classes, across a 7 Myr time slice of the middle Eocene featuring a major transient warming event, the middle Eocene climatic optimum (MECO; ∼40 Ma), at study sites in the midlatitude North Atlantic. Using generalized additive models, we investigate community responses to climatic fluctuations. After correcting for any effects of fossil fragmentation, we show a peak in generic diversity in the early and middle stages of the MECO as well as divergent trajectories between the typical size-selected community (>180 µm) and a broader assemblage, including smaller genera (>63 µm). Assemblages featuring smaller genera are more resilient to the climatic fluctuations of the MECO than those assemblages that feature only larger genera, maintaining their community structure at the reference Hill numbers for Shannon's and Simpson's indices. These results raise fundamental questions about how communities respond to climate excursions. In addition, our results emphasize the need to design studies with the aim of collecting the most inclusive data possible to allow detection of community changes and determine which species are likely to dominate future environments.\",\"PeriodicalId\":54646,\"journal\":{\"name\":\"Paleobiology\",\"volume\":\"49 1\",\"pages\":\"77 - 98\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2022.24\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2022.24","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Small but mighty: how overlooked small species maintain community structure through middle Eocene climate change
Abstract. Understanding current and future biodiversity responses to changing climate is pivotal as anthropogenic climate change continues. This understanding is complicated by the multitude of available metrics to quantify dynamics and by biased sampling protocols. Here, we investigate the impact of sampling protocol strategies using a data-rich fossil record to calculate effective diversity using Hill numbers for the first time on Paleogene planktonic foraminifera. We sample 22,830 individual tests, in two different size classes, across a 7 Myr time slice of the middle Eocene featuring a major transient warming event, the middle Eocene climatic optimum (MECO; ∼40 Ma), at study sites in the midlatitude North Atlantic. Using generalized additive models, we investigate community responses to climatic fluctuations. After correcting for any effects of fossil fragmentation, we show a peak in generic diversity in the early and middle stages of the MECO as well as divergent trajectories between the typical size-selected community (>180 µm) and a broader assemblage, including smaller genera (>63 µm). Assemblages featuring smaller genera are more resilient to the climatic fluctuations of the MECO than those assemblages that feature only larger genera, maintaining their community structure at the reference Hill numbers for Shannon's and Simpson's indices. These results raise fundamental questions about how communities respond to climate excursions. In addition, our results emphasize the need to design studies with the aim of collecting the most inclusive data possible to allow detection of community changes and determine which species are likely to dominate future environments.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.