今天生物医学成像的数学——透视

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2023-05-26 DOI:10.1088/2516-1091/acd973
M. Betcke, C. Schönlieb
{"title":"今天生物医学成像的数学——透视","authors":"M. Betcke, C. Schönlieb","doi":"10.1088/2516-1091/acd973","DOIUrl":null,"url":null,"abstract":"Biomedical imaging is a fascinating, rich and dynamic research area, which has huge importance in biomedical research and clinical practice alike. The key technology behind the processing, and automated analysis and quantification of imaging data is mathematics. Starting with the optimisation of the image acquisition and the reconstruction of an image from indirect tomographic measurement data, all the way to the automated segmentation of tumours in medical images and the design of optimal treatment plans based on image biomarkers, mathematics appears in all of these in different flavours. Non-smooth optimisation in the context of sparsity-promoting image priors, partial differential equations for image registration and motion estimation, and deep neural networks for image segmentation, to name just a few. In this article, we present and review mathematical topics that arise within the whole biomedical imaging pipeline, from tomographic measurements to clinical support tools, and highlight some modern topics and open problems. The article is addressed to both biomedical researchers who want to get a taste of where mathematics arises in biomedical imaging as well as mathematicians who are interested in what mathematical challenges biomedical imaging research entails.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematics of biomedical imaging today—a perspective\",\"authors\":\"M. Betcke, C. Schönlieb\",\"doi\":\"10.1088/2516-1091/acd973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical imaging is a fascinating, rich and dynamic research area, which has huge importance in biomedical research and clinical practice alike. The key technology behind the processing, and automated analysis and quantification of imaging data is mathematics. Starting with the optimisation of the image acquisition and the reconstruction of an image from indirect tomographic measurement data, all the way to the automated segmentation of tumours in medical images and the design of optimal treatment plans based on image biomarkers, mathematics appears in all of these in different flavours. Non-smooth optimisation in the context of sparsity-promoting image priors, partial differential equations for image registration and motion estimation, and deep neural networks for image segmentation, to name just a few. In this article, we present and review mathematical topics that arise within the whole biomedical imaging pipeline, from tomographic measurements to clinical support tools, and highlight some modern topics and open problems. The article is addressed to both biomedical researchers who want to get a taste of where mathematics arises in biomedical imaging as well as mathematicians who are interested in what mathematical challenges biomedical imaging research entails.\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/acd973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/acd973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物医学成像是一个引人入胜、内容丰富、充满活力的研究领域,在生物医学研究和临床实践中都具有重要意义。图像数据的处理、自动分析和量化背后的关键技术是数学。从优化图像采集和从间接断层测量数据重建图像开始,一直到医学图像中肿瘤的自动分割和基于图像生物标志物的最佳治疗计划的设计,数学以不同的方式出现在所有这些方面。稀疏性促进图像先验的非平滑优化、用于图像配准和运动估计的偏微分方程以及用于图像分割的深度神经网络,仅举几例。在这篇文章中,我们介绍并回顾了整个生物医学成像管道中出现的数学主题,从断层摄影测量到临床支持工具,并强调了一些现代主题和悬而未决的问题。这篇文章既面向希望了解生物医学成像中数学产生的地方的生物医学研究人员,也面向对生物医学成像研究所带来的数学挑战感兴趣的数学家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematics of biomedical imaging today—a perspective
Biomedical imaging is a fascinating, rich and dynamic research area, which has huge importance in biomedical research and clinical practice alike. The key technology behind the processing, and automated analysis and quantification of imaging data is mathematics. Starting with the optimisation of the image acquisition and the reconstruction of an image from indirect tomographic measurement data, all the way to the automated segmentation of tumours in medical images and the design of optimal treatment plans based on image biomarkers, mathematics appears in all of these in different flavours. Non-smooth optimisation in the context of sparsity-promoting image priors, partial differential equations for image registration and motion estimation, and deep neural networks for image segmentation, to name just a few. In this article, we present and review mathematical topics that arise within the whole biomedical imaging pipeline, from tomographic measurements to clinical support tools, and highlight some modern topics and open problems. The article is addressed to both biomedical researchers who want to get a taste of where mathematics arises in biomedical imaging as well as mathematicians who are interested in what mathematical challenges biomedical imaging research entails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1