基于逆方法的航空燃油泵叶轮设计及性能分析

Q2 Engineering Designs Pub Date : 2023-04-30 DOI:10.3390/designs7030061
Chenguang Ping, Jinguang Yang, M. Ferlauto, Yang Zhao
{"title":"基于逆方法的航空燃油泵叶轮设计及性能分析","authors":"Chenguang Ping, Jinguang Yang, M. Ferlauto, Yang Zhao","doi":"10.3390/designs7030061","DOIUrl":null,"url":null,"abstract":"Centrifugal pumps have a wide range of applications in the aviation field. The present work focuses on the optimal design of aviation fuel pump impellers by means of an inverse method. The fuel pump impeller is designed here by solving an inverse problem, in which the impeller geometry is found by imposing a target blade loading. As the inverse procedure is inviscid, an iterative process based on RANS is then applied to finally converge to a fully viscous solution. Three representative loading distributions have been investigated, and the final performances are evaluated by RANS computations. Since flow variables, rather than the blade geometry, are imposed on the target flow field, it is found that the impellers designed by way of the inverse method have high efficiency under the conditions without cavitation; among them, the pump impeller with a higher loading at the hub maintains a high efficiency for a wide range of flow conditions and also has better anti-cavitation performances under low inlet pressure conditions. Moreover, cavitation resistance can be improved by adjusting the loading distribution near the blade leading edge using the inverse design tool.","PeriodicalId":53150,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impeller Design and Performance Analysis of Aviation Fuel Pump Based on the Inverse Method\",\"authors\":\"Chenguang Ping, Jinguang Yang, M. Ferlauto, Yang Zhao\",\"doi\":\"10.3390/designs7030061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrifugal pumps have a wide range of applications in the aviation field. The present work focuses on the optimal design of aviation fuel pump impellers by means of an inverse method. The fuel pump impeller is designed here by solving an inverse problem, in which the impeller geometry is found by imposing a target blade loading. As the inverse procedure is inviscid, an iterative process based on RANS is then applied to finally converge to a fully viscous solution. Three representative loading distributions have been investigated, and the final performances are evaluated by RANS computations. Since flow variables, rather than the blade geometry, are imposed on the target flow field, it is found that the impellers designed by way of the inverse method have high efficiency under the conditions without cavitation; among them, the pump impeller with a higher loading at the hub maintains a high efficiency for a wide range of flow conditions and also has better anti-cavitation performances under low inlet pressure conditions. Moreover, cavitation resistance can be improved by adjusting the loading distribution near the blade leading edge using the inverse design tool.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7030061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.3390/designs7030061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

离心泵在航空领域有着广泛的应用。本文主要研究了航空燃油泵叶轮的反求优化设计。本文通过求解一个反问题来设计燃油泵叶轮,该反问题通过施加目标叶片载荷来确定叶轮的几何形状。由于逆过程是无粘性的,然后应用基于RANS的迭代过程最终收敛到全粘性解。研究了三种具有代表性的载荷分布,并通过RANS计算对最终性能进行了评价。由于对目标流场施加的是流动变量,而不是叶片的几何形状,因此在无空化条件下,用反求法设计的叶轮具有较高的效率;其中轮毂处载荷较高的泵叶轮在较宽的流动工况下保持较高的效率,在进口压力较低的工况下也具有较好的抗汽蚀性能。此外,利用逆设计工具调整叶片前缘附近的载荷分布,可以提高叶片抗空化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impeller Design and Performance Analysis of Aviation Fuel Pump Based on the Inverse Method
Centrifugal pumps have a wide range of applications in the aviation field. The present work focuses on the optimal design of aviation fuel pump impellers by means of an inverse method. The fuel pump impeller is designed here by solving an inverse problem, in which the impeller geometry is found by imposing a target blade loading. As the inverse procedure is inviscid, an iterative process based on RANS is then applied to finally converge to a fully viscous solution. Three representative loading distributions have been investigated, and the final performances are evaluated by RANS computations. Since flow variables, rather than the blade geometry, are imposed on the target flow field, it is found that the impellers designed by way of the inverse method have high efficiency under the conditions without cavitation; among them, the pump impeller with a higher loading at the hub maintains a high efficiency for a wide range of flow conditions and also has better anti-cavitation performances under low inlet pressure conditions. Moreover, cavitation resistance can be improved by adjusting the loading distribution near the blade leading edge using the inverse design tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mechanical Transmissions with Convex–Concave Multipair Contact of Teeth in Precessional Gearing Design and Operational Assessment of a Railroad Track Robot for Railcar Undercarriage Condition Inspection Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1