生成马尔可夫链可逆性的系统方法

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2023-08-16 DOI:10.1109/TIT.2023.3304685
Michael C. H. Choi;Geoffrey Wolfer
{"title":"生成马尔可夫链可逆性的系统方法","authors":"Michael C. H. Choi;Geoffrey Wolfer","doi":"10.1109/TIT.2023.3304685","DOIUrl":null,"url":null,"abstract":"Given a target distribution \n<inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula>\n and an arbitrary Markov infinitesimal generator \n<inline-formula> <tex-math>$L$ </tex-math></inline-formula>\n on a finite state space \n<inline-formula> <tex-math>$\\mathcal {X}$ </tex-math></inline-formula>\n, we develop three structured and inter-related approaches to generate new reversiblizations from \n<inline-formula> <tex-math>$L$ </tex-math></inline-formula>\n. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of \n<inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula>\n-reversible generators under suitable information divergences such as \n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\n-divergences. With different choices of functions \n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\n, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex *-conjugate in the study of \n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\n-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 5","pages":"3145-3161"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10220192","citationCount":"0","resultStr":"{\"title\":\"Systematic Approaches to Generate Reversiblizations of Markov Chains\",\"authors\":\"Michael C. H. Choi;Geoffrey Wolfer\",\"doi\":\"10.1109/TIT.2023.3304685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a target distribution \\n<inline-formula> <tex-math>$\\\\pi $ </tex-math></inline-formula>\\n and an arbitrary Markov infinitesimal generator \\n<inline-formula> <tex-math>$L$ </tex-math></inline-formula>\\n on a finite state space \\n<inline-formula> <tex-math>$\\\\mathcal {X}$ </tex-math></inline-formula>\\n, we develop three structured and inter-related approaches to generate new reversiblizations from \\n<inline-formula> <tex-math>$L$ </tex-math></inline-formula>\\n. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of \\n<inline-formula> <tex-math>$\\\\pi $ </tex-math></inline-formula>\\n-reversible generators under suitable information divergences such as \\n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\\n-divergences. With different choices of functions \\n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\\n, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex *-conjugate in the study of \\n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\\n-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 5\",\"pages\":\"3145-3161\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10220192\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10220192/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10220192/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

给定有限状态空间$\mathcal{X}$上的目标分布$\pi$和任意马尔可夫无穷小生成器$L$,我们开发了三种结构化且相互关联的方法来从$L$生成新的可逆。第一种方法依赖于几何视角,在几何视角中,我们将可逆视为在适当的信息发散(如$f$-发散)下对$\pi$-可逆生成器空间的投影。通过对函数$f$的不同选择,我们不仅恢复了几乎所有已建立的可逆性,而且解开并生成了新的可逆性。一路上,我们揭示了有趣的几何结果,如平分性质、勾股恒等式、平行四边形定律和控制这些可逆的算术-几何调和平均不等式的马尔可夫链对应物。这进一步成为引入马尔可夫链序列的信息质心概念的动机,并给出其存在性和唯一性的条件。在第一种方法的基础上,我们将可逆性视为广义手段。在第二种方法中,我们通过广义均值的不同自然概念,如柯西均值或对偶均值,构造了新的可逆性。在第三种方法中,我们结合最近引入的局部平衡马尔可夫过程框架和凸$*$-共轭的概念来研究$f$-散度。后者提供了丰富的平衡函数来源,以产生新的可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Approaches to Generate Reversiblizations of Markov Chains
Given a target distribution $\pi $ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal {X}$ , we develop three structured and inter-related approaches to generate new reversiblizations from $L$ . The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi $ -reversible generators under suitable information divergences such as $f$ -divergences. With different choices of functions $f$ , we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex *-conjugate in the study of $f$ -divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1