集成了区域内存管理和无标记分代垃圾收集

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Functional Programming Pub Date : 2021-02-22 DOI:10.1017/S0956796821000010
M. Elsman, Niels Hallenberg
{"title":"集成了区域内存管理和无标记分代垃圾收集","authors":"M. Elsman, Niels Hallenberg","doi":"10.1017/S0956796821000010","DOIUrl":null,"url":null,"abstract":"Abstract We present a region-based memory management scheme with support for generational garbage collection. The scheme features a compile-time region inference algorithm, which associates values with logical regions, and builds on a region type system that deploys region types at runtime to avoid the overhead of write barriers and to support partly tag-free garbage collection. The scheme is implemented in the MLKit Standard ML compiler, which generates native x64 machine code. Besides demonstrating a number of important formal properties of the scheme, we measure the scheme’s characteristics, for a number of benchmarks, and compare the performance of the generated executables with the performance of executables generated with the MLton state-of-the-art Standard ML compiler and configurations of the MLKit with and without region inference and generational garbage collection enabled. Although region inference often serves the purpose of generations, combining region inference with generational garbage collection is shown often to be superior to combining region inference with non-generational collection despite the overhead introduced by a larger amount of memory waste, due to region fragmentation.","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0956796821000010","citationCount":"9","resultStr":"{\"title\":\"Integrating region memory management and tag-free generational garbage collection\",\"authors\":\"M. Elsman, Niels Hallenberg\",\"doi\":\"10.1017/S0956796821000010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a region-based memory management scheme with support for generational garbage collection. The scheme features a compile-time region inference algorithm, which associates values with logical regions, and builds on a region type system that deploys region types at runtime to avoid the overhead of write barriers and to support partly tag-free garbage collection. The scheme is implemented in the MLKit Standard ML compiler, which generates native x64 machine code. Besides demonstrating a number of important formal properties of the scheme, we measure the scheme’s characteristics, for a number of benchmarks, and compare the performance of the generated executables with the performance of executables generated with the MLton state-of-the-art Standard ML compiler and configurations of the MLKit with and without region inference and generational garbage collection enabled. Although region inference often serves the purpose of generations, combining region inference with generational garbage collection is shown often to be superior to combining region inference with non-generational collection despite the overhead introduced by a larger amount of memory waste, due to region fragmentation.\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0956796821000010\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956796821000010\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796821000010","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 9

摘要

摘要我们提出了一种基于区域的内存管理方案,支持代垃圾收集。该方案采用编译时区域推理算法,将值与逻辑区域相关联,并建立在区域类型系统的基础上,该系统在运行时部署区域类型,以避免写障碍的开销,并支持部分无标记的垃圾收集。该方案在MLKit Standard ML编译器中实现,该编译器生成本机x64计算机代码。除了证明该方案的一些重要形式性质外,我们还测量了该方案的特性,用于许多基准,并将生成的可执行文件的性能与使用MLton最先进的标准ML编译器生成的可运行文件的性能以及启用和不启用区域推断和世代垃圾收集的MLKit的配置进行比较。尽管区域推断通常有助于生成,但将区域推断与生成垃圾收集相结合通常比将区域推断和非生成收集相结合要好,尽管由于区域碎片化,大量内存浪费会带来开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating region memory management and tag-free generational garbage collection
Abstract We present a region-based memory management scheme with support for generational garbage collection. The scheme features a compile-time region inference algorithm, which associates values with logical regions, and builds on a region type system that deploys region types at runtime to avoid the overhead of write barriers and to support partly tag-free garbage collection. The scheme is implemented in the MLKit Standard ML compiler, which generates native x64 machine code. Besides demonstrating a number of important formal properties of the scheme, we measure the scheme’s characteristics, for a number of benchmarks, and compare the performance of the generated executables with the performance of executables generated with the MLton state-of-the-art Standard ML compiler and configurations of the MLKit with and without region inference and generational garbage collection enabled. Although region inference often serves the purpose of generations, combining region inference with generational garbage collection is shown often to be superior to combining region inference with non-generational collection despite the overhead introduced by a larger amount of memory waste, due to region fragmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Programming
Journal of Functional Programming 工程技术-计算机:软件工程
CiteScore
1.70
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.
期刊最新文献
Signature restriction for polymorphic algebraic effects Asymptotic speedup via effect handlers Static Blame for gradual typing Knuth–Morris–Pratt illustrated Sparcl: A language for partially invertible computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1