Lin Yang, Ben Yu, Deming Han, Kun Zhang, Hong-wei Liu, Cailing Xiao, Li-gang Hu, Yongguang Yin, Jianbo Shi, Guibin Jiang
{"title":"通过稳定的汞同位素解码汞的海洋生物地球化学循环","authors":"Lin Yang, Ben Yu, Deming Han, Kun Zhang, Hong-wei Liu, Cailing Xiao, Li-gang Hu, Yongguang Yin, Jianbo Shi, Guibin Jiang","doi":"10.1080/10643389.2023.2195797","DOIUrl":null,"url":null,"abstract":"Abstract The oceans, serving as some of the most extensive reservoirs of mercury (Hg) on Earth, play an essential role in the global Hg biogeochemical circulation, as a sink for atmospheric deposits and surface runoff while simultaneously emitting Hg to the atmosphere. Clarifying the mechanisms during cycling of Hg in marine ecosystems is a crucial segment in elucidating global Hg behavior and assessing its risks to wildlife and humans. The stable Hg isotope technique has emerged as a powerful tool for identifying potential sources and certain processes of Hg. Herein, the research advances in marine Hg biogeochemical cycling were reviewed from an isotopic tracing perspective, including sources of marine Hg, isotopic fingerprints across various marine media, and applications of Hg isotopes in pathways, transport, and transformation mechanisms associated with marine environments. The knowledge gaps and challenges were further discussed in the development of ultratrace level and species-specific isotopic analytical methods, the isotope fractionation mechanisms in reactions and processes, and the integration of multiple approaches and cross disciplines. These future studies would advance our understanding of Hg behavior in oceanic environments, its authentic function, and interactions with other ecosystems in the global Hg cycle, and evaluate its response to environmental changes. Graphical Abstract","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1935 - 1956"},"PeriodicalIF":11.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the marine biogeochemical cycling of mercury by stable mercury isotopes\",\"authors\":\"Lin Yang, Ben Yu, Deming Han, Kun Zhang, Hong-wei Liu, Cailing Xiao, Li-gang Hu, Yongguang Yin, Jianbo Shi, Guibin Jiang\",\"doi\":\"10.1080/10643389.2023.2195797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The oceans, serving as some of the most extensive reservoirs of mercury (Hg) on Earth, play an essential role in the global Hg biogeochemical circulation, as a sink for atmospheric deposits and surface runoff while simultaneously emitting Hg to the atmosphere. Clarifying the mechanisms during cycling of Hg in marine ecosystems is a crucial segment in elucidating global Hg behavior and assessing its risks to wildlife and humans. The stable Hg isotope technique has emerged as a powerful tool for identifying potential sources and certain processes of Hg. Herein, the research advances in marine Hg biogeochemical cycling were reviewed from an isotopic tracing perspective, including sources of marine Hg, isotopic fingerprints across various marine media, and applications of Hg isotopes in pathways, transport, and transformation mechanisms associated with marine environments. The knowledge gaps and challenges were further discussed in the development of ultratrace level and species-specific isotopic analytical methods, the isotope fractionation mechanisms in reactions and processes, and the integration of multiple approaches and cross disciplines. These future studies would advance our understanding of Hg behavior in oceanic environments, its authentic function, and interactions with other ecosystems in the global Hg cycle, and evaluate its response to environmental changes. Graphical Abstract\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"53 1\",\"pages\":\"1935 - 1956\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2023.2195797\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2195797","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Decoding the marine biogeochemical cycling of mercury by stable mercury isotopes
Abstract The oceans, serving as some of the most extensive reservoirs of mercury (Hg) on Earth, play an essential role in the global Hg biogeochemical circulation, as a sink for atmospheric deposits and surface runoff while simultaneously emitting Hg to the atmosphere. Clarifying the mechanisms during cycling of Hg in marine ecosystems is a crucial segment in elucidating global Hg behavior and assessing its risks to wildlife and humans. The stable Hg isotope technique has emerged as a powerful tool for identifying potential sources and certain processes of Hg. Herein, the research advances in marine Hg biogeochemical cycling were reviewed from an isotopic tracing perspective, including sources of marine Hg, isotopic fingerprints across various marine media, and applications of Hg isotopes in pathways, transport, and transformation mechanisms associated with marine environments. The knowledge gaps and challenges were further discussed in the development of ultratrace level and species-specific isotopic analytical methods, the isotope fractionation mechanisms in reactions and processes, and the integration of multiple approaches and cross disciplines. These future studies would advance our understanding of Hg behavior in oceanic environments, its authentic function, and interactions with other ecosystems in the global Hg cycle, and evaluate its response to environmental changes. Graphical Abstract
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.