粗叶桉叶片营养成分的近红外光谱分析及施肥试验区树木实时监测的潜力

IF 1.6 4区 化学 Q3 CHEMISTRY, APPLIED Journal of Near Infrared Spectroscopy Pub Date : 2021-04-12 DOI:10.1177/09670335211007971
A. Alwi, R. Meder, Y. Japarudin, H. A. Hamid, R. Sanusi, K. Yusoff
{"title":"粗叶桉叶片营养成分的近红外光谱分析及施肥试验区树木实时监测的潜力","authors":"A. Alwi, R. Meder, Y. Japarudin, H. A. Hamid, R. Sanusi, K. Yusoff","doi":"10.1177/09670335211007971","DOIUrl":null,"url":null,"abstract":"Eucalyptus pellita F. Muell. has become an important tree species in the forest plantations of SE Asia, and in Malaysian Borneo in particular, to replace thousands of hectares of Acacia mangium Willd. which has suffered significant loss caused by Ceratocystis manginecans infection in Sabah, Malaysia. Since its first introduction at a commercial scale in 2012, E. pellita has been planted in many areas in the region. The species replacement requires new silvicultural practices to induce the adaptability of E. pellita to grow in the region and this includes relevant research to optimise such regimes as planting distance, pruning, weeding practices and nutrition regimes. In this present study, the nutritional status of the foliage was investigated with the aim to develop near infrared spectroscopic calibrations that can be used to monitor and quantify nutrient status, particularly total foliar nitrogen (N) and phosphorus (P) in the field. Spectra acquired on fresh foliage in situ on the tree could be used to predict N and P with accuracy suitable for operational decision-making regards fertiliser application. If greater accuracy is required, spectra acquired on dry, milled foliage could be used to predict N and P within a relative error of 10% (R2c, r2CV, RMSEP, RPD = 0.77, 0.71, 0.02 g 100 g-1, 1.9 for foliar P and = 0.90, 0.88, 0.21 g 100 g-1, 3.0 for foliar N on dry, milled foliage). The ultimate application of this is in situ nutrient monitoring, particularly to aid longitudinal studies in fertiliser trial plots and forest operations, as the non-destructive nature of NIR spectroscopy would enable regular monitoring of individual leaves over time without the need to destructively sample them. This would aid the temporal and spatial analysis of field data.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"29 1","pages":"158 - 167"},"PeriodicalIF":1.6000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09670335211007971","citationCount":"4","resultStr":"{\"title\":\"Near infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots\",\"authors\":\"A. Alwi, R. Meder, Y. Japarudin, H. A. Hamid, R. Sanusi, K. Yusoff\",\"doi\":\"10.1177/09670335211007971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eucalyptus pellita F. Muell. has become an important tree species in the forest plantations of SE Asia, and in Malaysian Borneo in particular, to replace thousands of hectares of Acacia mangium Willd. which has suffered significant loss caused by Ceratocystis manginecans infection in Sabah, Malaysia. Since its first introduction at a commercial scale in 2012, E. pellita has been planted in many areas in the region. The species replacement requires new silvicultural practices to induce the adaptability of E. pellita to grow in the region and this includes relevant research to optimise such regimes as planting distance, pruning, weeding practices and nutrition regimes. In this present study, the nutritional status of the foliage was investigated with the aim to develop near infrared spectroscopic calibrations that can be used to monitor and quantify nutrient status, particularly total foliar nitrogen (N) and phosphorus (P) in the field. Spectra acquired on fresh foliage in situ on the tree could be used to predict N and P with accuracy suitable for operational decision-making regards fertiliser application. If greater accuracy is required, spectra acquired on dry, milled foliage could be used to predict N and P within a relative error of 10% (R2c, r2CV, RMSEP, RPD = 0.77, 0.71, 0.02 g 100 g-1, 1.9 for foliar P and = 0.90, 0.88, 0.21 g 100 g-1, 3.0 for foliar N on dry, milled foliage). The ultimate application of this is in situ nutrient monitoring, particularly to aid longitudinal studies in fertiliser trial plots and forest operations, as the non-destructive nature of NIR spectroscopy would enable regular monitoring of individual leaves over time without the need to destructively sample them. This would aid the temporal and spatial analysis of field data.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":\"29 1\",\"pages\":\"158 - 167\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/09670335211007971\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335211007971\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211007971","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

蓝桉。已成为东南亚,特别是马来西亚婆罗洲森林种植园的重要树种,以取代数千公顷的野生相思。在马来西亚沙巴遭受了因锰角鼻虫感染而造成的重大损失。自2012年首次以商业规模引进以来,该地区的许多地区都种植了佩利塔。物种替代需要新的造林措施来诱导褐藻在该地区生长的适应性,这包括优化种植距离、修剪、除草和营养制度等相关研究。在本研究中,研究了叶片的营养状况,目的是建立近红外光谱校准,可用于监测和量化田间营养状况,特别是叶片总氮(N)和总磷(P)。在树的新鲜叶片上获取的光谱可以准确地预测N和P,适合于施肥方面的操作决策。如果需要更高的精度,可以使用干燥、铣削叶片上获得的光谱来预测N和P,相对误差在10%以内(R2c、r2CV、RMSEP、RPD = 0.77、0.71、0.02 g 100 g- 1,1.9,干燥、铣削叶片上叶片N = 0.90、0.88、0.21 g 100 g- 1,3.0)。这种方法的最终应用是就地监测营养物质,特别是协助肥料试验田和森林作业的纵向研究,因为近红外光谱的非破坏性性质将使人们能够长期定期监测单个叶子,而无需破坏性地取样。这将有助于实地数据的时间和空间分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots
Eucalyptus pellita F. Muell. has become an important tree species in the forest plantations of SE Asia, and in Malaysian Borneo in particular, to replace thousands of hectares of Acacia mangium Willd. which has suffered significant loss caused by Ceratocystis manginecans infection in Sabah, Malaysia. Since its first introduction at a commercial scale in 2012, E. pellita has been planted in many areas in the region. The species replacement requires new silvicultural practices to induce the adaptability of E. pellita to grow in the region and this includes relevant research to optimise such regimes as planting distance, pruning, weeding practices and nutrition regimes. In this present study, the nutritional status of the foliage was investigated with the aim to develop near infrared spectroscopic calibrations that can be used to monitor and quantify nutrient status, particularly total foliar nitrogen (N) and phosphorus (P) in the field. Spectra acquired on fresh foliage in situ on the tree could be used to predict N and P with accuracy suitable for operational decision-making regards fertiliser application. If greater accuracy is required, spectra acquired on dry, milled foliage could be used to predict N and P within a relative error of 10% (R2c, r2CV, RMSEP, RPD = 0.77, 0.71, 0.02 g 100 g-1, 1.9 for foliar P and = 0.90, 0.88, 0.21 g 100 g-1, 3.0 for foliar N on dry, milled foliage). The ultimate application of this is in situ nutrient monitoring, particularly to aid longitudinal studies in fertiliser trial plots and forest operations, as the non-destructive nature of NIR spectroscopy would enable regular monitoring of individual leaves over time without the need to destructively sample them. This would aid the temporal and spatial analysis of field data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
35
审稿时长
6 months
期刊介绍: JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.
期刊最新文献
Non-linear machine learning coupled near infrared spectroscopy enhanced model performance and insights for coffee origin traceability Using visible and near infrared spectroscopy and machine learning for estimating total petroleum hydrocarbons in contaminated soils Detection and classification of spongy tissue disorder in mango fruit during ripening by using visible-near infrared spectroscopy and multivariate analysis A method to standardize the temperature for near infrared spectra of the indigo pigment in non-dairy cream based on symbolic regression Moisture content of Panax notoginseng taproot predicted using near infrared spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1