{"title":"一种基于深度学习的微博社交网络情绪分析方法","authors":"Xianyong Li, Jiabo Zhang, Yajun Du, Jian Zhu, Yongquan Fan, Xiaoliang Chen","doi":"10.1080/17517575.2022.2037160","DOIUrl":null,"url":null,"abstract":"ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Novel Deep Learning-based Sentiment Analysis Method Enhanced with Emojis in Microblog Social Networks\",\"authors\":\"Xianyong Li, Jiabo Zhang, Yajun Du, Jian Zhu, Yongquan Fan, Xiaoliang Chen\",\"doi\":\"10.1080/17517575.2022.2037160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2022.2037160\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2022.2037160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Deep Learning-based Sentiment Analysis Method Enhanced with Emojis in Microblog Social Networks
ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.
期刊介绍:
Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.