GNSS网络(尼罗河三角洲网络,埃及)基线配置的优化-案例研究

IF 1.2 Q4 REMOTE SENSING Journal of Applied Geodesy Pub Date : 2022-05-10 DOI:10.1515/jag-2022-0010
M. Farhan, M. Gomaa, A. Sedeek
{"title":"GNSS网络(尼罗河三角洲网络,埃及)基线配置的优化-案例研究","authors":"M. Farhan, M. Gomaa, A. Sedeek","doi":"10.1515/jag-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract When starting any GNSS measurements, there is a need to establish a survey plan with the required optimal baselines. The optimal GNSS baselines can be chosen by solving the geodetic second-order design (SOD). The particle swarm optimization PSO is used widely to solve geodetic design issues. This work employed the particle swarm optimization (PSO) algorithm, a stochastic global optimization method, to select the optimal GNSS baselines. The optimal baselines satisfy the set criterion matrix at a reasonable cost. The fundamentals of the algorithm are presented. The effectiveness and usefulness of the technique are then demonstrated using a Nile Delta GNSS network as an example. In some cases, we have to observe many GNSS benchmarks with limited instrumentations. PSO represents a powerful tool for optimizing baseline to get the required accuracy with limited capabilities (like limited receivers). The PSO algorithm, a stochastic global optimization approach, was used in this paper to find the best observation weights to measure in the field that will match the predetermined criterion matrix with a fair degree of precision. The method’s fundamentals are presented with an actual geodetic network over the Nile delta in Egypt. In the current work, two survey strategies were applied. One represents a case with 9 GNSS receivers (high capability), and another one represents the tested survey plan with limited GNSS receivers (3 receivers, low capability) after applying PSO. By comparing two survey strategies, applying the PSO algorithm to a real Nile delta geodetic network shows its effectiveness on the obtained coordinate accuracy. This obtained accuracy ranged from 2 mm to 3 mm in X, Y, Z, and 3 mm in height. Also, the linear closure error between known and estimated coordinates improved to be 1.4 cm after applying PSO.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of baseline configuration in a GNSS network (Nile Delta network, Egypt) – A case study\",\"authors\":\"M. Farhan, M. Gomaa, A. Sedeek\",\"doi\":\"10.1515/jag-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When starting any GNSS measurements, there is a need to establish a survey plan with the required optimal baselines. The optimal GNSS baselines can be chosen by solving the geodetic second-order design (SOD). The particle swarm optimization PSO is used widely to solve geodetic design issues. This work employed the particle swarm optimization (PSO) algorithm, a stochastic global optimization method, to select the optimal GNSS baselines. The optimal baselines satisfy the set criterion matrix at a reasonable cost. The fundamentals of the algorithm are presented. The effectiveness and usefulness of the technique are then demonstrated using a Nile Delta GNSS network as an example. In some cases, we have to observe many GNSS benchmarks with limited instrumentations. PSO represents a powerful tool for optimizing baseline to get the required accuracy with limited capabilities (like limited receivers). The PSO algorithm, a stochastic global optimization approach, was used in this paper to find the best observation weights to measure in the field that will match the predetermined criterion matrix with a fair degree of precision. The method’s fundamentals are presented with an actual geodetic network over the Nile delta in Egypt. In the current work, two survey strategies were applied. One represents a case with 9 GNSS receivers (high capability), and another one represents the tested survey plan with limited GNSS receivers (3 receivers, low capability) after applying PSO. By comparing two survey strategies, applying the PSO algorithm to a real Nile delta geodetic network shows its effectiveness on the obtained coordinate accuracy. This obtained accuracy ranged from 2 mm to 3 mm in X, Y, Z, and 3 mm in height. Also, the linear closure error between known and estimated coordinates improved to be 1.4 cm after applying PSO.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2022-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

在开始任何GNSS测量时,都需要建立具有所需最佳基线的测量计划。通过求解大地测量二阶设计(SOD),选择最优GNSS基线。粒子群算法在大地测量设计中得到了广泛的应用。本文采用随机全局优化方法粒子群优化(PSO)算法选择最优GNSS基线。最优基线以合理的代价满足所设置的准则矩阵。介绍了该算法的基本原理。然后以尼罗河三角洲GNSS网络为例演示了该技术的有效性和实用性。在某些情况下,我们必须用有限的仪器观察许多GNSS基准。PSO是一个强大的工具,可以在有限的能力(如有限的接收器)下优化基线以获得所需的精度。本文采用随机全局优化算法——粒子群算法(PSO),寻找与预定准则矩阵匹配精度较高的最佳观测权值。该方法的基本原理与埃及尼罗河三角洲的实际大地测量网相结合。在目前的工作中,采用了两种调查策略。其中一幅代表有9个GNSS接收机(高容量)的情况,另一幅代表应用PSO后的有限GNSS接收机(3个接收机,低容量)的测试测量方案。通过对两种测量策略的比较,将PSO算法应用于实际的尼罗河三角洲大地测量网,验证了该算法对得到的坐标精度的有效性。这获得的精度范围从2毫米到3毫米在X, Y, Z和3毫米的高度。应用粒子群算法后,已知坐标与估计坐标之间的线性闭合误差提高到1.4 cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of baseline configuration in a GNSS network (Nile Delta network, Egypt) – A case study
Abstract When starting any GNSS measurements, there is a need to establish a survey plan with the required optimal baselines. The optimal GNSS baselines can be chosen by solving the geodetic second-order design (SOD). The particle swarm optimization PSO is used widely to solve geodetic design issues. This work employed the particle swarm optimization (PSO) algorithm, a stochastic global optimization method, to select the optimal GNSS baselines. The optimal baselines satisfy the set criterion matrix at a reasonable cost. The fundamentals of the algorithm are presented. The effectiveness and usefulness of the technique are then demonstrated using a Nile Delta GNSS network as an example. In some cases, we have to observe many GNSS benchmarks with limited instrumentations. PSO represents a powerful tool for optimizing baseline to get the required accuracy with limited capabilities (like limited receivers). The PSO algorithm, a stochastic global optimization approach, was used in this paper to find the best observation weights to measure in the field that will match the predetermined criterion matrix with a fair degree of precision. The method’s fundamentals are presented with an actual geodetic network over the Nile delta in Egypt. In the current work, two survey strategies were applied. One represents a case with 9 GNSS receivers (high capability), and another one represents the tested survey plan with limited GNSS receivers (3 receivers, low capability) after applying PSO. By comparing two survey strategies, applying the PSO algorithm to a real Nile delta geodetic network shows its effectiveness on the obtained coordinate accuracy. This obtained accuracy ranged from 2 mm to 3 mm in X, Y, Z, and 3 mm in height. Also, the linear closure error between known and estimated coordinates improved to be 1.4 cm after applying PSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
期刊最新文献
Occurrence characteristics of ionospheric scintillations in the civilian GPS signals (L1, L2, and L5) through a dedicated scintillation monitoring receiver at a low-latitude location in India during the 25th solar cycle A new challenge for cadastral surveying in Taiwan: feasibility analysis using combination on CORS data and online PPP service Monitoring of a rockfill embankment dam using TLS and sUAS point clouds Analyzing recent deformation in Wadi Hagul, Eastern Desert, Egypt, via advanced remote sensing and geodetic data processing Regional evaluation of global geopotential models and three types of digital elevation models with ground-based gravity and GNSS/levelling data using several techniques over Sudan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1