Abdullah R Alanzi, Mohammad K Parvez, Mohammed S Al-Dosari
{"title":"基于结构的SARS-CoV-2天然抑制剂及其Delta和Omicron变体蛋白的虚拟鉴定","authors":"Abdullah R Alanzi, Mohammad K Parvez, Mohammed S Al-Dosari","doi":"10.2217/fvl-2022-0184","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Structure-based identification of natural compounds against SARS-CoV-2, Delta and Omicron target proteins.</p><p><strong>Materials & methods: </strong>Several known antiviral natural compounds were subjected to molecular docking and MD simulation against SARS-CoV-2 Mpro, Helicase and Spike, including Delta and Omicron Spikes.</p><p><strong>Results: </strong>Of the docked ligands, 20 selected for each complex exhibited overall good binding affinities (-7.79 to -5.06 kcal/mol) with acceptable physiochemistry following Lipinski's rule. Finally, two best ligands from each complex upon simulation showed structural stability and compactness.</p><p><strong>Conclusion: </strong>Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A were identified as potential inhibitors of SARS-CoV-2 Mpro, Helicase and Spike, while Orientin and Obetrioside also showed good binding affinities with Omicron Spike. Catechin and Neridienone A formed stable complexes with Delta Spike.</p>","PeriodicalId":12505,"journal":{"name":"Future Virology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241455/pdf/","citationCount":"1","resultStr":"{\"title\":\"Structure-based virtual identification of natural inhibitors of SARS-CoV-2 and its Delta and Omicron variant proteins.\",\"authors\":\"Abdullah R Alanzi, Mohammad K Parvez, Mohammed S Al-Dosari\",\"doi\":\"10.2217/fvl-2022-0184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Structure-based identification of natural compounds against SARS-CoV-2, Delta and Omicron target proteins.</p><p><strong>Materials & methods: </strong>Several known antiviral natural compounds were subjected to molecular docking and MD simulation against SARS-CoV-2 Mpro, Helicase and Spike, including Delta and Omicron Spikes.</p><p><strong>Results: </strong>Of the docked ligands, 20 selected for each complex exhibited overall good binding affinities (-7.79 to -5.06 kcal/mol) with acceptable physiochemistry following Lipinski's rule. Finally, two best ligands from each complex upon simulation showed structural stability and compactness.</p><p><strong>Conclusion: </strong>Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A were identified as potential inhibitors of SARS-CoV-2 Mpro, Helicase and Spike, while Orientin and Obetrioside also showed good binding affinities with Omicron Spike. Catechin and Neridienone A formed stable complexes with Delta Spike.</p>\",\"PeriodicalId\":12505,\"journal\":{\"name\":\"Future Virology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241455/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2217/fvl-2022-0184\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/fvl-2022-0184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Structure-based virtual identification of natural inhibitors of SARS-CoV-2 and its Delta and Omicron variant proteins.
Aim: Structure-based identification of natural compounds against SARS-CoV-2, Delta and Omicron target proteins.
Materials & methods: Several known antiviral natural compounds were subjected to molecular docking and MD simulation against SARS-CoV-2 Mpro, Helicase and Spike, including Delta and Omicron Spikes.
Results: Of the docked ligands, 20 selected for each complex exhibited overall good binding affinities (-7.79 to -5.06 kcal/mol) with acceptable physiochemistry following Lipinski's rule. Finally, two best ligands from each complex upon simulation showed structural stability and compactness.
Conclusion: Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A were identified as potential inhibitors of SARS-CoV-2 Mpro, Helicase and Spike, while Orientin and Obetrioside also showed good binding affinities with Omicron Spike. Catechin and Neridienone A formed stable complexes with Delta Spike.
期刊介绍:
Future Virology is a peer-reviewed journal that delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this ever-expanding area of research. It is an interdisciplinary forum for all scientists working in the field today.