采用线性回归分析、bp神经网络和随机森林等方法对红枣灌溉系统进行设计

IF 0.6 Q4 AGRICULTURAL ENGINEERING INMATEH-Agricultural Engineering Pub Date : 2023-08-17 DOI:10.35633/inmateh-70-16
Wenhao Dou, Sanmin Sun, Pengxiang Xu
{"title":"采用线性回归分析、bp神经网络和随机森林等方法对红枣灌溉系统进行设计","authors":"Wenhao Dou, Sanmin Sun, Pengxiang Xu","doi":"10.35633/inmateh-70-16","DOIUrl":null,"url":null,"abstract":"This paper evaluates linear regression analysis, BP neural network, and a random forest prediction model for the prediction of jujube water demand. The results highlight that the R2 of the random forest is 0.941 and the residual distribution is the most stable. Hence, the random forest is more suitable for prediction, and therefore, an intelligent irrigation system is established employing random forest, where the cloud server is the upper computer and a Raspberry Pi is the lower computer, and at the same time, a PC and a mobile interface was built to present various information about the developed irrigation system.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE DESIGN OF JUJUBE IRRIGATION SYSTEM USING LINEAR REGRESSION ANALYSIS, BP NEURAL NETWORK AND RANDOM FOREST\",\"authors\":\"Wenhao Dou, Sanmin Sun, Pengxiang Xu\",\"doi\":\"10.35633/inmateh-70-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates linear regression analysis, BP neural network, and a random forest prediction model for the prediction of jujube water demand. The results highlight that the R2 of the random forest is 0.941 and the residual distribution is the most stable. Hence, the random forest is more suitable for prediction, and therefore, an intelligent irrigation system is established employing random forest, where the cloud server is the upper computer and a Raspberry Pi is the lower computer, and at the same time, a PC and a mobile interface was built to present various information about the developed irrigation system.\",\"PeriodicalId\":44197,\"journal\":{\"name\":\"INMATEH-Agricultural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INMATEH-Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35633/inmateh-70-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-70-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

利用线性回归分析、BP神经网络和随机森林预测模型对枣树需水量进行预测。结果表明,随机森林的R2为0.941,残差分布最稳定。因此,随机森林更适合于预测,因此,利用随机森林建立了一个智能灌溉系统,其中云服务器为上位机,树莓派为下位机,同时通过PC机和移动接口来呈现所开发的灌溉系统的各种信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE DESIGN OF JUJUBE IRRIGATION SYSTEM USING LINEAR REGRESSION ANALYSIS, BP NEURAL NETWORK AND RANDOM FOREST
This paper evaluates linear regression analysis, BP neural network, and a random forest prediction model for the prediction of jujube water demand. The results highlight that the R2 of the random forest is 0.941 and the residual distribution is the most stable. Hence, the random forest is more suitable for prediction, and therefore, an intelligent irrigation system is established employing random forest, where the cloud server is the upper computer and a Raspberry Pi is the lower computer, and at the same time, a PC and a mobile interface was built to present various information about the developed irrigation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
期刊最新文献
TECHNICAL AND ENVIRONMENTAL EVALUATION OF USING RICE HUSKS AND SOLAR ENERGY ON THE ACTIVATION OF ABSORPTION CHILLERS IN THE CARIBBEAN REGION. CASE STUDY: BARRANQUILLA ALGORITHM FOR OPTIMIZING THE MOVEMENT OF A MOUNTED MACHINETRACTOR UNIT IN THE HEADLAND OF AN IRREGULARLY SHAPED FIELD STUDY ON THE INFLUENCE OF PCA PRE-TREATMENT ON PIG FACE IDENTIFICATION WITH KNN IoT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK DESIGN AND EXPERIMENT OF A SINGLE-ROW SMALL GRAIN PRECISION SEEDER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1