流通过弹性结构进入充液壳体的电流传输研究

Q2 Physics and Astronomy Advances in Acoustics and Vibration Pub Date : 2018-05-02 DOI:10.1155/2018/5273280
H. Rui, Li Chuangye, J. Laizhao, W. Weike
{"title":"流通过弹性结构进入充液壳体的电流传输研究","authors":"H. Rui, Li Chuangye, J. Laizhao, W. Weike","doi":"10.1155/2018/5273280","DOIUrl":null,"url":null,"abstract":"The work of this paper is backgrounded by prediction or evaluation and control of mechanical self-noise in sonar array cavity. The vibratory power flow transmission analysis is applied to reveal the overall vibration level of the fluid-structural coupled system. Through modal coupling analysis on the fluid-structural vibration of the fluid-filled enclosure with elastic boundaries, an efficient computational method is deduced to determine the vibratory power flow generated by exterior excitations on the outside surface of the elastic structure, including the total power flow entering into the fluid-structural coupled system and the net power flow transmitted into the hydroacoustic field. Characteristics of the coupled natural frequencies and modals are investigated by a numerical example of a rectangular water-filled cavity with five acoustic rigid walls and one elastic panel. Influential factors of power flow transmission characteristics are further discussed with the purpose of overall evaluation and reduction of the cavity water sound energy.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":"2018 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5273280","citationCount":"2","resultStr":"{\"title\":\"Research on Power Flow Transmission through Elastic Structure into a Fluid-Filled Enclosure\",\"authors\":\"H. Rui, Li Chuangye, J. Laizhao, W. Weike\",\"doi\":\"10.1155/2018/5273280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work of this paper is backgrounded by prediction or evaluation and control of mechanical self-noise in sonar array cavity. The vibratory power flow transmission analysis is applied to reveal the overall vibration level of the fluid-structural coupled system. Through modal coupling analysis on the fluid-structural vibration of the fluid-filled enclosure with elastic boundaries, an efficient computational method is deduced to determine the vibratory power flow generated by exterior excitations on the outside surface of the elastic structure, including the total power flow entering into the fluid-structural coupled system and the net power flow transmitted into the hydroacoustic field. Characteristics of the coupled natural frequencies and modals are investigated by a numerical example of a rectangular water-filled cavity with five acoustic rigid walls and one elastic panel. Influential factors of power flow transmission characteristics are further discussed with the purpose of overall evaluation and reduction of the cavity water sound energy.\",\"PeriodicalId\":44068,\"journal\":{\"name\":\"Advances in Acoustics and Vibration\",\"volume\":\"2018 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/5273280\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Acoustics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/5273280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/5273280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

摘要

本文的工作以声纳阵列腔中机械自噪声的预测、评估和控制为背景。应用振动功率流传递分析来揭示流体-结构耦合系统的整体振动水平。通过对弹性边界充液外壳的流体-结构振动进行模态耦合分析,推导出了一种确定弹性结构外表面外部激励产生的振动功率流的有效计算方法,包括进入流体-结构耦合系统的总功率流和传输到水声场的净功率流。通过一个具有五个声学刚性壁和一个弹性板的矩形充水腔的数值例子,研究了耦合固有频率和模态的特性。为了全面评价和降低空腔水声能,进一步探讨了功率流传输特性的影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Power Flow Transmission through Elastic Structure into a Fluid-Filled Enclosure
The work of this paper is backgrounded by prediction or evaluation and control of mechanical self-noise in sonar array cavity. The vibratory power flow transmission analysis is applied to reveal the overall vibration level of the fluid-structural coupled system. Through modal coupling analysis on the fluid-structural vibration of the fluid-filled enclosure with elastic boundaries, an efficient computational method is deduced to determine the vibratory power flow generated by exterior excitations on the outside surface of the elastic structure, including the total power flow entering into the fluid-structural coupled system and the net power flow transmitted into the hydroacoustic field. Characteristics of the coupled natural frequencies and modals are investigated by a numerical example of a rectangular water-filled cavity with five acoustic rigid walls and one elastic panel. Influential factors of power flow transmission characteristics are further discussed with the purpose of overall evaluation and reduction of the cavity water sound energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.
期刊最新文献
Expression of Concern on “Vibroacoustic Analysis of a Refrigerator Freezer Cabinet Coupled with an Air Duct” Corrigendum to “Estimation of Acceleration Amplitude of Vehicle by Back Propagation Neural Networks” Buckling Temperature and Natural Frequencies of Thick Porous Functionally Graded Beams Resting on Elastic Foundation in a Thermal Environment Measurement and Adaptive Identification of Nonstationary Acoustic Impulse Responses Analyses of Dynamic Behavior of Vertical Axis Wind Turbine in Transient Regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1