基于新型闭环的高角稳定性小型化FSS设计

IF 1.2 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Antennas and Propagation Pub Date : 2023-07-12 DOI:10.1155/2023/8894404
Wei Li, Fengshuo Zhang, Ying Suo, Zhe Jiang, Jinghui Qiu
{"title":"基于新型闭环的高角稳定性小型化FSS设计","authors":"Wei Li, Fengshuo Zhang, Ying Suo, Zhe Jiang, Jinghui Qiu","doi":"10.1155/2023/8894404","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a miniaturized 2.5-dimensional (2.5D) frequency selective surface (FSS) structure with high angular stability. A novel closed-loop FSS is formed by combining the Jerusalem cross (JC) structure with the conventional rectangular closed loop using vias. This approach further enhances the coupling performance of the FSS and thus achieves miniaturized design. The unit cell size of the proposed FSS is 0.019λ0 × 0.019λ0 at the resonant frequency, and the metal is printed on a dielectric substrate with a thickness of 0.003λ0. The proposed FSS has a resonant frequency of 850 MHz and exhibits band-stop characteristics. It is insensitive to the incident angle with a good operating performance in both the TE and TM wave modes. Therefore, it can be well used as an electromagnetic shield for the GSM 850 band. In order to facilitate the rapid analysis and design of the FSS, the equivalent circuit model is further analyzed and established, and values of the corresponding lumped components are derived. In addition, a prototype FSS is fabricated using printed circuit board technology and is tested in a microwave anechoic chamber. The full-wave analysis simulation, equivalent circuit model simulation, and practical measurement results reflect a high level of consistency.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Miniaturized FSS with High Angular Stability Utilizing a Novel Closed Loop\",\"authors\":\"Wei Li, Fengshuo Zhang, Ying Suo, Zhe Jiang, Jinghui Qiu\",\"doi\":\"10.1155/2023/8894404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a miniaturized 2.5-dimensional (2.5D) frequency selective surface (FSS) structure with high angular stability. A novel closed-loop FSS is formed by combining the Jerusalem cross (JC) structure with the conventional rectangular closed loop using vias. This approach further enhances the coupling performance of the FSS and thus achieves miniaturized design. The unit cell size of the proposed FSS is 0.019λ0 × 0.019λ0 at the resonant frequency, and the metal is printed on a dielectric substrate with a thickness of 0.003λ0. The proposed FSS has a resonant frequency of 850 MHz and exhibits band-stop characteristics. It is insensitive to the incident angle with a good operating performance in both the TE and TM wave modes. Therefore, it can be well used as an electromagnetic shield for the GSM 850 band. In order to facilitate the rapid analysis and design of the FSS, the equivalent circuit model is further analyzed and established, and values of the corresponding lumped components are derived. In addition, a prototype FSS is fabricated using printed circuit board technology and is tested in a microwave anechoic chamber. The full-wave analysis simulation, equivalent circuit model simulation, and practical measurement results reflect a high level of consistency.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8894404\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/8894404","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有高角稳定性的小型化2.5维(2.5D)频率选择表面(FSS)结构。将耶路撒冷十字(JC)结构与传统的矩形过孔闭环结构相结合,形成了一种新型的闭环FSS。这种方法进一步提高了FSS的耦合性能,从而实现了小型化设计。所设计的FSS在谐振频率下的晶胞尺寸为0.019λ0 × 0.019λ0,金属被印刷在厚度为0.003λ0的介质衬底上。该FSS谐振频率为850mhz,具有带阻特性。它对入射角不敏感,在TE波和TM波模式下都有良好的工作性能。因此,它可以很好地用作GSM 850频段的电磁屏蔽。为了便于快速分析和设计FSS,进一步分析和建立了等效电路模型,并推导了相应的集总分量值。此外,利用印刷电路板技术制作了FSS原型,并在微波消声室中进行了测试。全波分析仿真、等效电路模型仿真和实际测量结果均反映出较高的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Miniaturized FSS with High Angular Stability Utilizing a Novel Closed Loop
In this paper, we propose a miniaturized 2.5-dimensional (2.5D) frequency selective surface (FSS) structure with high angular stability. A novel closed-loop FSS is formed by combining the Jerusalem cross (JC) structure with the conventional rectangular closed loop using vias. This approach further enhances the coupling performance of the FSS and thus achieves miniaturized design. The unit cell size of the proposed FSS is 0.019λ0 × 0.019λ0 at the resonant frequency, and the metal is printed on a dielectric substrate with a thickness of 0.003λ0. The proposed FSS has a resonant frequency of 850 MHz and exhibits band-stop characteristics. It is insensitive to the incident angle with a good operating performance in both the TE and TM wave modes. Therefore, it can be well used as an electromagnetic shield for the GSM 850 band. In order to facilitate the rapid analysis and design of the FSS, the equivalent circuit model is further analyzed and established, and values of the corresponding lumped components are derived. In addition, a prototype FSS is fabricated using printed circuit board technology and is tested in a microwave anechoic chamber. The full-wave analysis simulation, equivalent circuit model simulation, and practical measurement results reflect a high level of consistency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Antennas and Propagation
International Journal of Antennas and Propagation ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.10
自引率
13.30%
发文量
158
审稿时长
3.8 months
期刊介绍: International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media. As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Measurement of High-Power Microwave Impulse Response Characteristics of Reflector Materials A Simultaneous Study on Wire-Loop, Plate-Loop, and Plate Antennas for Wideband Circular Polarization Extracting Pole Characteristics of Complex Radar Targets for the Aircraft in Resonance Region Using RMSPSO_ARMA Safety Assessment of Electromagnetic Environmental Exposure for GPS Antenna of Electric Vehicle Design of the Monopulse Feeding Network for a Slotted Waveguide Array on an Annular Disk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1