Prof. Yuhui Chen, Jiaxiang Sun, Pengyang Jiang, Zonghua Chai, Baiqiang Zhang, Junhui Li
{"title":"多孔陶瓷基形状稳定相变材料的制备、提高热导率及其应用综述","authors":"Prof. Yuhui Chen, Jiaxiang Sun, Pengyang Jiang, Zonghua Chai, Baiqiang Zhang, Junhui Li","doi":"10.1002/cben.202300023","DOIUrl":null,"url":null,"abstract":"<p>A phase change material is an ideal energy storage material with huge latent heat and nearly constant phase change temperature, but there are serious problems in application such as leakage and low thermal conductivity. Porous ceramic matrixes are widely used in phase change material packaging because of their controllable porosity, large specific surface area, and high thermal conductivity. This paper introduces the preparation of porous ceramics and encapsulation of form-stable phase change materials (FSPCMs) based on porous ceramics, thermal conductivity enhancement and other aspects of the comb, in addition, the applications of porous ceramic-based FSPCMs in industrial waste heat recovery, temperature regulation of buildings, solar energy collection and storage, and battery thermal management system are summarized, in order to provide reference for the performance optimization of porous ceramic-based FSPCMs and explore new preparation methods, finally, the challenges and future development of the FSPCMS are summarized. Porous ceramic-based FSPCMs are expected to make major breakthroughs in the future to solve the increasingly serious energy problems.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"941-958"},"PeriodicalIF":6.2000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on Porous Ceramic-Based Form-Stable Phase Change Materials: Preparation, Enhance Thermal Conductivity, and Application\",\"authors\":\"Prof. Yuhui Chen, Jiaxiang Sun, Pengyang Jiang, Zonghua Chai, Baiqiang Zhang, Junhui Li\",\"doi\":\"10.1002/cben.202300023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A phase change material is an ideal energy storage material with huge latent heat and nearly constant phase change temperature, but there are serious problems in application such as leakage and low thermal conductivity. Porous ceramic matrixes are widely used in phase change material packaging because of their controllable porosity, large specific surface area, and high thermal conductivity. This paper introduces the preparation of porous ceramics and encapsulation of form-stable phase change materials (FSPCMs) based on porous ceramics, thermal conductivity enhancement and other aspects of the comb, in addition, the applications of porous ceramic-based FSPCMs in industrial waste heat recovery, temperature regulation of buildings, solar energy collection and storage, and battery thermal management system are summarized, in order to provide reference for the performance optimization of porous ceramic-based FSPCMs and explore new preparation methods, finally, the challenges and future development of the FSPCMS are summarized. Porous ceramic-based FSPCMs are expected to make major breakthroughs in the future to solve the increasingly serious energy problems.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"10 6\",\"pages\":\"941-958\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300023\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300023","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Review on Porous Ceramic-Based Form-Stable Phase Change Materials: Preparation, Enhance Thermal Conductivity, and Application
A phase change material is an ideal energy storage material with huge latent heat and nearly constant phase change temperature, but there are serious problems in application such as leakage and low thermal conductivity. Porous ceramic matrixes are widely used in phase change material packaging because of their controllable porosity, large specific surface area, and high thermal conductivity. This paper introduces the preparation of porous ceramics and encapsulation of form-stable phase change materials (FSPCMs) based on porous ceramics, thermal conductivity enhancement and other aspects of the comb, in addition, the applications of porous ceramic-based FSPCMs in industrial waste heat recovery, temperature regulation of buildings, solar energy collection and storage, and battery thermal management system are summarized, in order to provide reference for the performance optimization of porous ceramic-based FSPCMs and explore new preparation methods, finally, the challenges and future development of the FSPCMS are summarized. Porous ceramic-based FSPCMs are expected to make major breakthroughs in the future to solve the increasingly serious energy problems.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,