{"title":"网球鞋最佳后底几何形状的确定:有限元分析","authors":"Lisa Paillard, Alexis Herbaut, Simon Duraffourg","doi":"10.1080/19424280.2023.2199389","DOIUrl":null,"url":null,"abstract":"Tennis is an intense sport requiring multidirectional displacements and many acceleration-deceleration phases on the court. This results in large ground impacts up to 2.5 bodyweight together with a sagittal foot angle above 40 degrees (Herbaut et al., 2016). Such impacts localised on the heel generate large loading rate and peak pressure which may cause acute or overuse injuries, even more when the player wears improper shoes. Shoe heel geometry can have an influence on impact characteristics. For instance, a flattened heel geometry induces a larger impact loading rate in badminton lunges when compared to a rounded heel geometry (Lam et al., 2017). Yet the optimal curvature of the rear part of the shoe remains unknown in order to minimise impact parameters such as the loading rate.","PeriodicalId":45905,"journal":{"name":"Footwear Science","volume":"15 1","pages":"S113 - S114"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of optimal rear sole geometry for tennis shoes: a finite element analysis\",\"authors\":\"Lisa Paillard, Alexis Herbaut, Simon Duraffourg\",\"doi\":\"10.1080/19424280.2023.2199389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tennis is an intense sport requiring multidirectional displacements and many acceleration-deceleration phases on the court. This results in large ground impacts up to 2.5 bodyweight together with a sagittal foot angle above 40 degrees (Herbaut et al., 2016). Such impacts localised on the heel generate large loading rate and peak pressure which may cause acute or overuse injuries, even more when the player wears improper shoes. Shoe heel geometry can have an influence on impact characteristics. For instance, a flattened heel geometry induces a larger impact loading rate in badminton lunges when compared to a rounded heel geometry (Lam et al., 2017). Yet the optimal curvature of the rear part of the shoe remains unknown in order to minimise impact parameters such as the loading rate.\",\"PeriodicalId\":45905,\"journal\":{\"name\":\"Footwear Science\",\"volume\":\"15 1\",\"pages\":\"S113 - S114\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Footwear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19424280.2023.2199389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Footwear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19424280.2023.2199389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ERGONOMICS","Score":null,"Total":0}
Determination of optimal rear sole geometry for tennis shoes: a finite element analysis
Tennis is an intense sport requiring multidirectional displacements and many acceleration-deceleration phases on the court. This results in large ground impacts up to 2.5 bodyweight together with a sagittal foot angle above 40 degrees (Herbaut et al., 2016). Such impacts localised on the heel generate large loading rate and peak pressure which may cause acute or overuse injuries, even more when the player wears improper shoes. Shoe heel geometry can have an influence on impact characteristics. For instance, a flattened heel geometry induces a larger impact loading rate in badminton lunges when compared to a rounded heel geometry (Lam et al., 2017). Yet the optimal curvature of the rear part of the shoe remains unknown in order to minimise impact parameters such as the loading rate.