{"title":"海洋物理中变系数(2+1)和(3+1)维扩展Sakovich方程的Painlevé分析、自Bäcklund变换和新的精确解","authors":"Shailendra Singh, S. Saha Ray","doi":"10.1016/j.joes.2022.01.008","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers time-dependent variable coefficients <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional extended Sakovich equation. Painlevé analysis and auto-Bäcklund transformation methods are used to examine both the considered equations. Painlevé analysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations. Two new family of exact analytical solutions are being obtained successfully for each of the considered equations. The soliton solutions in the form of rational and exponential functions are being depicted. The results are also expressed graphically to illustrate the potential and physical behaviour of both equations. Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 3","pages":"Pages 246-262"},"PeriodicalIF":13.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Painlevé analysis, auto-Bäcklund transformation and new exact solutions of (2+1) and (3+1)-dimensional extended Sakovich equation with time dependent variable coefficients in ocean physics\",\"authors\":\"Shailendra Singh, S. Saha Ray\",\"doi\":\"10.1016/j.joes.2022.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article considers time-dependent variable coefficients <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional extended Sakovich equation. Painlevé analysis and auto-Bäcklund transformation methods are used to examine both the considered equations. Painlevé analysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations. Two new family of exact analytical solutions are being obtained successfully for each of the considered equations. The soliton solutions in the form of rational and exponential functions are being depicted. The results are also expressed graphically to illustrate the potential and physical behaviour of both equations. Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.</p></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"8 3\",\"pages\":\"Pages 246-262\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013322000201\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322000201","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Painlevé analysis, auto-Bäcklund transformation and new exact solutions of (2+1) and (3+1)-dimensional extended Sakovich equation with time dependent variable coefficients in ocean physics
This article considers time-dependent variable coefficients and -dimensional extended Sakovich equation. Painlevé analysis and auto-Bäcklund transformation methods are used to examine both the considered equations. Painlevé analysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations. Two new family of exact analytical solutions are being obtained successfully for each of the considered equations. The soliton solutions in the form of rational and exponential functions are being depicted. The results are also expressed graphically to illustrate the potential and physical behaviour of both equations. Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.