{"title":"基于聚类的随机过采样样本下采样和支持向量机的乳腺癌症诊断不平衡分类","authors":"Jue Zhang, Li Chen","doi":"10.1080/24699322.2019.1649074","DOIUrl":null,"url":null,"abstract":"Abstract To overcome the two-class imbalanced classification problem existing in the diagnosis of breast cancer, a hybrid of Random Over Sampling Example, K-means and Support vector machine (RK-SVM) model is proposed which is based on sample selection. Random Over Sampling Example (ROSE) is utilized to balance the dataset and further improve the diagnosis accuracy by Support Vector Machine (SVM). As there is one different sample selection factor via clustering that encourages selecting the samples near the class boundary. The purpose of clustering here is to reduce the risk of removing useful samples and improve the efficiency of sample selection. To test the performance of the new hybrid classifier, it is implemented on breast cancer datasets and the other three datasets from the University of California Irvine (UCI) machine learning repository, which are commonly used datasets in class imbalanced learning. The extensive experimental results show that our proposed hybrid method outperforms most of the competitive algorithms in term of G-mean and accuracy indices. Additionally, experimental results show that this method also performs superiorly for binary problems.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"24 1","pages":"62 - 72"},"PeriodicalIF":1.5000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2019.1649074","citationCount":"47","resultStr":"{\"title\":\"Clustering-based undersampling with random over sampling examples and support vector machine for imbalanced classification of breast cancer diagnosis\",\"authors\":\"Jue Zhang, Li Chen\",\"doi\":\"10.1080/24699322.2019.1649074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To overcome the two-class imbalanced classification problem existing in the diagnosis of breast cancer, a hybrid of Random Over Sampling Example, K-means and Support vector machine (RK-SVM) model is proposed which is based on sample selection. Random Over Sampling Example (ROSE) is utilized to balance the dataset and further improve the diagnosis accuracy by Support Vector Machine (SVM). As there is one different sample selection factor via clustering that encourages selecting the samples near the class boundary. The purpose of clustering here is to reduce the risk of removing useful samples and improve the efficiency of sample selection. To test the performance of the new hybrid classifier, it is implemented on breast cancer datasets and the other three datasets from the University of California Irvine (UCI) machine learning repository, which are commonly used datasets in class imbalanced learning. The extensive experimental results show that our proposed hybrid method outperforms most of the competitive algorithms in term of G-mean and accuracy indices. Additionally, experimental results show that this method also performs superiorly for binary problems.\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":\"24 1\",\"pages\":\"62 - 72\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24699322.2019.1649074\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2019.1649074\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2019.1649074","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Clustering-based undersampling with random over sampling examples and support vector machine for imbalanced classification of breast cancer diagnosis
Abstract To overcome the two-class imbalanced classification problem existing in the diagnosis of breast cancer, a hybrid of Random Over Sampling Example, K-means and Support vector machine (RK-SVM) model is proposed which is based on sample selection. Random Over Sampling Example (ROSE) is utilized to balance the dataset and further improve the diagnosis accuracy by Support Vector Machine (SVM). As there is one different sample selection factor via clustering that encourages selecting the samples near the class boundary. The purpose of clustering here is to reduce the risk of removing useful samples and improve the efficiency of sample selection. To test the performance of the new hybrid classifier, it is implemented on breast cancer datasets and the other three datasets from the University of California Irvine (UCI) machine learning repository, which are commonly used datasets in class imbalanced learning. The extensive experimental results show that our proposed hybrid method outperforms most of the competitive algorithms in term of G-mean and accuracy indices. Additionally, experimental results show that this method also performs superiorly for binary problems.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.