{"title":"缺铁对心力衰竭伴射血分数降低心功能及结构的影响","authors":"Pieter Martens","doi":"10.15420/cfr.2021.26","DOIUrl":null,"url":null,"abstract":"Over the past decade, the detrimental impact of iron deficiency in heart failure with reduced ejection fraction has become abundantly clear, showing a negative impact on functional status, quality of life, cardiac function and structure, exercise capacity and an increased risk of hospitalisation due to heart failure. Mechanistic studies have shown the impact of iron deficiency in altering mitochondrial function and negatively affecting the already altered cardiac energetics in heart failure with reduced ejection fraction. Such failing energetics form the basis of the alterations to cellular myocyte shortening, culminating in reduced systolic function and cardiac performance. The IRON-CRT trials show that ferric carboxymaltose is capable of improving cardiac structure and cardiac performance. This article discusses the effect of iron deficiency on cardiac function and structure and how it can be alleviated.","PeriodicalId":33741,"journal":{"name":"Cardiac Failure Review","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction\",\"authors\":\"Pieter Martens\",\"doi\":\"10.15420/cfr.2021.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, the detrimental impact of iron deficiency in heart failure with reduced ejection fraction has become abundantly clear, showing a negative impact on functional status, quality of life, cardiac function and structure, exercise capacity and an increased risk of hospitalisation due to heart failure. Mechanistic studies have shown the impact of iron deficiency in altering mitochondrial function and negatively affecting the already altered cardiac energetics in heart failure with reduced ejection fraction. Such failing energetics form the basis of the alterations to cellular myocyte shortening, culminating in reduced systolic function and cardiac performance. The IRON-CRT trials show that ferric carboxymaltose is capable of improving cardiac structure and cardiac performance. This article discusses the effect of iron deficiency on cardiac function and structure and how it can be alleviated.\",\"PeriodicalId\":33741,\"journal\":{\"name\":\"Cardiac Failure Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiac Failure Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15420/cfr.2021.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiac Failure Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15420/cfr.2021.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction
Over the past decade, the detrimental impact of iron deficiency in heart failure with reduced ejection fraction has become abundantly clear, showing a negative impact on functional status, quality of life, cardiac function and structure, exercise capacity and an increased risk of hospitalisation due to heart failure. Mechanistic studies have shown the impact of iron deficiency in altering mitochondrial function and negatively affecting the already altered cardiac energetics in heart failure with reduced ejection fraction. Such failing energetics form the basis of the alterations to cellular myocyte shortening, culminating in reduced systolic function and cardiac performance. The IRON-CRT trials show that ferric carboxymaltose is capable of improving cardiac structure and cardiac performance. This article discusses the effect of iron deficiency on cardiac function and structure and how it can be alleviated.