Xiao Li, Huiquan Jiang, Ning He, Wei-En Yuan, Y. Qian, Y. Ouyang
{"title":"石墨烯相关材料在生物医学中的应用及其在周围神经组织工程中的潜力","authors":"Xiao Li, Huiquan Jiang, Ning He, Wei-En Yuan, Y. Qian, Y. Ouyang","doi":"10.34133/2022/9892526","DOIUrl":null,"url":null,"abstract":"Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering\",\"authors\":\"Xiao Li, Huiquan Jiang, Ning He, Wei-En Yuan, Y. Qian, Y. Ouyang\",\"doi\":\"10.34133/2022/9892526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9892526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9892526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering
Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.