黄曲霉绿色合成纳米银及其抗菌性能研究

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-01-02 DOI:10.1515/cppm-2022-0054
Dinesh Reddy Gopa, Kalyani Pullapukuri
{"title":"黄曲霉绿色合成纳米银及其抗菌性能研究","authors":"Dinesh Reddy Gopa, Kalyani Pullapukuri","doi":"10.1515/cppm-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract Many methods have been developed for the synthesis of silver nanoparticles (Ag-NPs), yet disadvantages are there to declined their catalytic activity due to the large size with small surface area. Hence, herein, the fungus mediated synthesis of Ag-NPs has been reported. The synthesized Ag-NPs were further characterized by XRD, SEM, EDS, and UV–Vis spectroscopy to study the particle size, surface, crystalline nature, phase formation of Ag-NPs and the produced particles were found to be 41.9 nm. The antibacterial efficiency of synthesized Ag-NPs was examined on various bacteria including Streptococcus pyrogenes, Staphylococcus aureus, Bacillus coagulans, Klebsiella pneumoniae and Corynibacterium glutamicum. The Ag-NPs could be considered as excellent broad-spectrum antibacterial agent. More prominently, the Ag-NPs produced by Aspergillus flavus exhibited potent antibacterial activity against certain pathogens. Bacillus coagulans exhibited maximum zone of inhibition 25.16 ± 0.80 at 80 μg/mL with respective to the standard antibiotic 26.66 ± 1.22 at 30 μg/mL concentration.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Green synthesis of silver nanoparticles from Aspergillus flavus and their antibacterial performance\",\"authors\":\"Dinesh Reddy Gopa, Kalyani Pullapukuri\",\"doi\":\"10.1515/cppm-2022-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many methods have been developed for the synthesis of silver nanoparticles (Ag-NPs), yet disadvantages are there to declined their catalytic activity due to the large size with small surface area. Hence, herein, the fungus mediated synthesis of Ag-NPs has been reported. The synthesized Ag-NPs were further characterized by XRD, SEM, EDS, and UV–Vis spectroscopy to study the particle size, surface, crystalline nature, phase formation of Ag-NPs and the produced particles were found to be 41.9 nm. The antibacterial efficiency of synthesized Ag-NPs was examined on various bacteria including Streptococcus pyrogenes, Staphylococcus aureus, Bacillus coagulans, Klebsiella pneumoniae and Corynibacterium glutamicum. The Ag-NPs could be considered as excellent broad-spectrum antibacterial agent. More prominently, the Ag-NPs produced by Aspergillus flavus exhibited potent antibacterial activity against certain pathogens. Bacillus coagulans exhibited maximum zone of inhibition 25.16 ± 0.80 at 80 μg/mL with respective to the standard antibiotic 26.66 ± 1.22 at 30 μg/mL concentration.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2022-0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

摘要

摘要银纳米颗粒(Ag-NPs)的合成方法有很多,但由于其体积大、表面积小,导致其催化活性下降。因此,本文报道了真菌介导的Ag-NPs合成。通过XRD、SEM、EDS、UV-Vis等对合成的Ag-NPs进行了表征,研究了Ag-NPs的粒径、表面形貌、结晶性质、相形成等,得到的Ag-NPs粒径为41.9 nm。研究了合成的Ag-NPs对热原链球菌、金黄色葡萄球菌、凝固芽孢杆菌、肺炎克雷伯菌、谷氨酸冠状杆菌等多种细菌的抑菌效果。Ag-NPs是一种优良的广谱抗菌剂。更突出的是,由黄曲霉产生的Ag-NPs对某些病原体表现出强大的抗菌活性。凝结芽孢杆菌在80 μg/mL浓度下的最大抑菌带为25.16±0.80,标准抗生素在30 μg/mL浓度下的最大抑菌带为26.66±1.22。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green synthesis of silver nanoparticles from Aspergillus flavus and their antibacterial performance
Abstract Many methods have been developed for the synthesis of silver nanoparticles (Ag-NPs), yet disadvantages are there to declined their catalytic activity due to the large size with small surface area. Hence, herein, the fungus mediated synthesis of Ag-NPs has been reported. The synthesized Ag-NPs were further characterized by XRD, SEM, EDS, and UV–Vis spectroscopy to study the particle size, surface, crystalline nature, phase formation of Ag-NPs and the produced particles were found to be 41.9 nm. The antibacterial efficiency of synthesized Ag-NPs was examined on various bacteria including Streptococcus pyrogenes, Staphylococcus aureus, Bacillus coagulans, Klebsiella pneumoniae and Corynibacterium glutamicum. The Ag-NPs could be considered as excellent broad-spectrum antibacterial agent. More prominently, the Ag-NPs produced by Aspergillus flavus exhibited potent antibacterial activity against certain pathogens. Bacillus coagulans exhibited maximum zone of inhibition 25.16 ± 0.80 at 80 μg/mL with respective to the standard antibiotic 26.66 ± 1.22 at 30 μg/mL concentration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1