{"title":"现代纳米科学中力概念的演变:研究和教学项目中体验式学习的视角","authors":"D. Lombardo, L. Pasqua, M. Kiselev","doi":"10.1478/AAPP.99S1A30","DOIUrl":null,"url":null,"abstract":"Modern society requires to efficiently identify the new trends in sustainable development and their implications in future science, research and education. One of the major challenges in nanotechnology is the education and training of a new generation of skilled workers, that request the improvement of student understanding of the concept of force within the more broad scenery of modern nanoscience. The recent advancement in nanoscience and nanotechnology evidences the powerful methods of supramolecular approaches in modern nanoscience, which are based on the complex combinations of different forces acting both at the molecular and supramolecular levels. These forces represent the driving interactions for the efficient assembly of building blocks, and for the development of highly functional materials and devices with novel properties. Herein, a review of the evolution of the concept of force in connection with modern aspect of nanotechnology is presented. A special focus is devoted to the development of modern approaches taken from the academic research programs, that allows a fruitful understanding of the myriad of scientific discoveries that have characterized these last years. In this respect, the experiential learning method can be properly designed and delivered, with particular respect to the use of bio- and nanotechnology, and in ways that help the learners to efficiently develop the knowledge and skills needed in the modern age.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolution of the concept of force in modern nanoscience: The perspectives of the experiential learning in research and teaching programs\",\"authors\":\"D. Lombardo, L. Pasqua, M. Kiselev\",\"doi\":\"10.1478/AAPP.99S1A30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern society requires to efficiently identify the new trends in sustainable development and their implications in future science, research and education. One of the major challenges in nanotechnology is the education and training of a new generation of skilled workers, that request the improvement of student understanding of the concept of force within the more broad scenery of modern nanoscience. The recent advancement in nanoscience and nanotechnology evidences the powerful methods of supramolecular approaches in modern nanoscience, which are based on the complex combinations of different forces acting both at the molecular and supramolecular levels. These forces represent the driving interactions for the efficient assembly of building blocks, and for the development of highly functional materials and devices with novel properties. Herein, a review of the evolution of the concept of force in connection with modern aspect of nanotechnology is presented. A special focus is devoted to the development of modern approaches taken from the academic research programs, that allows a fruitful understanding of the myriad of scientific discoveries that have characterized these last years. In this respect, the experiential learning method can be properly designed and delivered, with particular respect to the use of bio- and nanotechnology, and in ways that help the learners to efficiently develop the knowledge and skills needed in the modern age.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.99S1A30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.99S1A30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evolution of the concept of force in modern nanoscience: The perspectives of the experiential learning in research and teaching programs
Modern society requires to efficiently identify the new trends in sustainable development and their implications in future science, research and education. One of the major challenges in nanotechnology is the education and training of a new generation of skilled workers, that request the improvement of student understanding of the concept of force within the more broad scenery of modern nanoscience. The recent advancement in nanoscience and nanotechnology evidences the powerful methods of supramolecular approaches in modern nanoscience, which are based on the complex combinations of different forces acting both at the molecular and supramolecular levels. These forces represent the driving interactions for the efficient assembly of building blocks, and for the development of highly functional materials and devices with novel properties. Herein, a review of the evolution of the concept of force in connection with modern aspect of nanotechnology is presented. A special focus is devoted to the development of modern approaches taken from the academic research programs, that allows a fruitful understanding of the myriad of scientific discoveries that have characterized these last years. In this respect, the experiential learning method can be properly designed and delivered, with particular respect to the use of bio- and nanotechnology, and in ways that help the learners to efficiently develop the knowledge and skills needed in the modern age.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.