贝叶斯停止

IF 2.2 4区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Mathematical Psychology Pub Date : 2023-09-01 DOI:10.1016/j.jmp.2023.102794
Igor Douven
{"title":"贝叶斯停止","authors":"Igor Douven","doi":"10.1016/j.jmp.2023.102794","DOIUrl":null,"url":null,"abstract":"<div><p>Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian<span> statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.</span></p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"116 ","pages":"Article 102794"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian stopping\",\"authors\":\"Igor Douven\",\"doi\":\"10.1016/j.jmp.2023.102794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian<span> statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.</span></p></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"116 \",\"pages\":\"Article 102794\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000500\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000500","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

停止规则是确定何时可以或应该终止数据收集的标准,允许进行推断。虽然传统上在经典统计学的背景下讨论,贝叶斯统计学家也开始探索停止规则。Kruschke利用最高密度区间的概念提出了贝叶斯停止规则,一旦足够的概率质量(或密度)在足够小的参数空间区域内积累,数据收集就可以停止。本文提出了一种替代Kruschke方法的方法,引入了相对重要区间的新概念,并考虑了概率质量在参数空间中的分布。通过计算机模拟,我们将这些建议相互比较,并与广泛使用的贝叶斯因子停止方法进行比较。我们的研究结果并不表明单一的优越建议,而是表明不同的停止规则可能适用于不同的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian stopping

Stopping rules are criteria for determining when data collection can or should be terminated, allowing for inferences to be made. While traditionally discussed in the context of classical statistics, Bayesian statisticians have also begun exploring stopping rules. Kruschke proposed a Bayesian stopping rule utilizing the concept of Highest Density Interval, where data collection can cease once enough probability mass (or density) accumulates in a sufficiently small region of parameter space. This paper presents an alternative to Kruschke’s approach, introducing the novel concept of Relative Importance Interval and considering the distribution of probability mass within parameter space. Using computer simulations, we compare these proposals to each other and to the widely-used Bayes factor-based stopping method. Our results do not indicate a single superior proposal but instead suggest that different stopping rules may be appropriate under different circumstances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Psychology
Journal of Mathematical Psychology 医学-数学跨学科应用
CiteScore
3.70
自引率
11.10%
发文量
37
审稿时长
20.2 weeks
期刊介绍: The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome. Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation. The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology. Research Areas include: • Models for sensation and perception, learning, memory and thinking • Fundamental measurement and scaling • Decision making • Neural modeling and networks • Psychophysics and signal detection • Neuropsychological theories • Psycholinguistics • Motivational dynamics • Animal behavior • Psychometric theory
期刊最新文献
Probabilistic models of delay discounting: “Fixed-endpoint” psychometric curves improve plausibility and performance Choosing is losing: How opportunity cost influences valuations and choice Analysing the bias introduced by adaptive designs to estimates of psychometric functions A class of random utility models yielding the exploded logit Dimensions of knowledge structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1