20世纪60年代中国光伏发电潜力的多模型综合预测

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric and Oceanic Science Letters Pub Date : 2023-09-01 DOI:10.1016/j.aosl.2023.100403
Xu Zhao , Xu Yue , Chenguang Tian , Hao Zhou , Bin Wang , Yuwen Chen , Yuan Zhao , Weijie Fu , Yihan Hu
{"title":"20世纪60年代中国光伏发电潜力的多模型综合预测","authors":"Xu Zhao ,&nbsp;Xu Yue ,&nbsp;Chenguang Tian ,&nbsp;Hao Zhou ,&nbsp;Bin Wang ,&nbsp;Yuwen Chen ,&nbsp;Yuan Zhao ,&nbsp;Weijie Fu ,&nbsp;Yihan Hu","doi":"10.1016/j.aosl.2023.100403","DOIUrl":null,"url":null,"abstract":"<div><p>China's demand for solar energy has been growing rapidly to meet energy transformation targets. However, the potential of solar energy is affected by weather conditions and is expected to change under climate warming. Here, the authors project the photovoltaic (PV) power potential over China under low and high emission scenarios by the 2060s, taking advantage of meteorological variables from 24 CMIP6 models and 4 PV models with varied formats. The ensemble mean of these models yields an average PV power of 277.2 KWh m<sup>−2</sup> yr<sup>−1</sup> during 2004–2014, with a decreasing tendency from the west to east. By 2054–2064, the national average PV power potential is projected to increase by 2.29% under a low emission scenario but decrease by 0.43% under a high emission scenario. The emission control in the former scenario significantly enhances surface solar radiation and promotes PV power in the east. On the contrary, strong warming causes inhibitions to PV power generation under the high emission scenario. Extreme warming events on average decrease the PV power potential by 0.28% under the low emission scenario and 0.44% under the high emission scenario, doubling and tripling the present-day loss, respectively. The projections reveal large benefits of controlling emissions for the future solar energy in China due to both the clean atmosphere and the moderate warming.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100403"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodel ensemble projection of photovoltaic power potential in China by the 2060s\",\"authors\":\"Xu Zhao ,&nbsp;Xu Yue ,&nbsp;Chenguang Tian ,&nbsp;Hao Zhou ,&nbsp;Bin Wang ,&nbsp;Yuwen Chen ,&nbsp;Yuan Zhao ,&nbsp;Weijie Fu ,&nbsp;Yihan Hu\",\"doi\":\"10.1016/j.aosl.2023.100403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>China's demand for solar energy has been growing rapidly to meet energy transformation targets. However, the potential of solar energy is affected by weather conditions and is expected to change under climate warming. Here, the authors project the photovoltaic (PV) power potential over China under low and high emission scenarios by the 2060s, taking advantage of meteorological variables from 24 CMIP6 models and 4 PV models with varied formats. The ensemble mean of these models yields an average PV power of 277.2 KWh m<sup>−2</sup> yr<sup>−1</sup> during 2004–2014, with a decreasing tendency from the west to east. By 2054–2064, the national average PV power potential is projected to increase by 2.29% under a low emission scenario but decrease by 0.43% under a high emission scenario. The emission control in the former scenario significantly enhances surface solar radiation and promotes PV power in the east. On the contrary, strong warming causes inhibitions to PV power generation under the high emission scenario. Extreme warming events on average decrease the PV power potential by 0.28% under the low emission scenario and 0.44% under the high emission scenario, doubling and tripling the present-day loss, respectively. The projections reveal large benefits of controlling emissions for the future solar energy in China due to both the clean atmosphere and the moderate warming.</p></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"16 5\",\"pages\":\"Article 100403\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283423000892\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000892","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了实现能源转型目标,中国对太阳能的需求一直在快速增长。然而,太阳能的潜力受到天气条件的影响,预计在气候变暖的情况下会发生变化。本文利用24个CMIP6模型和4个不同格式的PV模型的气象变量,预测了到2060年代中国低排放和高排放情景下的光伏发电潜力。在2004-2014年期间,这些模式的综合平均值平均光伏发电功率为277.2 KWh m−2 yr−1,从西到东呈下降趋势。预计到2054-2064年,低排放情景下全国平均光伏发电潜力将增长2.29%,高排放情景下将下降0.43%。前一种情况下的排放控制显著增强了地表太阳辐射,促进了东部地区的光伏发电。相反,在高排放情景下,强变暖对光伏发电产生抑制作用。在低排放情景下,极端变暖事件使光伏发电潜力平均减少0.28%,在高排放情景下,平均减少0.44%,分别是目前损失的两倍和三倍。这些预测表明,由于清洁的大气和适度的变暖,控制中国未来太阳能排放的巨大好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodel ensemble projection of photovoltaic power potential in China by the 2060s

China's demand for solar energy has been growing rapidly to meet energy transformation targets. However, the potential of solar energy is affected by weather conditions and is expected to change under climate warming. Here, the authors project the photovoltaic (PV) power potential over China under low and high emission scenarios by the 2060s, taking advantage of meteorological variables from 24 CMIP6 models and 4 PV models with varied formats. The ensemble mean of these models yields an average PV power of 277.2 KWh m−2 yr−1 during 2004–2014, with a decreasing tendency from the west to east. By 2054–2064, the national average PV power potential is projected to increase by 2.29% under a low emission scenario but decrease by 0.43% under a high emission scenario. The emission control in the former scenario significantly enhances surface solar radiation and promotes PV power in the east. On the contrary, strong warming causes inhibitions to PV power generation under the high emission scenario. Extreme warming events on average decrease the PV power potential by 0.28% under the low emission scenario and 0.44% under the high emission scenario, doubling and tripling the present-day loss, respectively. The projections reveal large benefits of controlling emissions for the future solar energy in China due to both the clean atmosphere and the moderate warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
期刊最新文献
Implications of the extremely hot summer of 2022 on urban ozone control in China Impacts of global biogenic isoprene emissions on surface ozone during 2000–2019 Enhanced nitrous acid (HONO) formation via NO2 uptake and its potential contribution to heavy haze formation during wintertime A portable instrument for measurement of atmospheric Ox and NO2 based on cavity ring-down spectroscopy Vertical distributions of VOCs in the Tibetan Plateau background region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1