Suyog Ghungrad, Meysam Faegh, B. Gould, S. Wolff, Azadeh Haghighi
{"title":"结构驱动的物理信息深度学习用于有限数据的激光粉末床聚变增材制造中的温度预测","authors":"Suyog Ghungrad, Meysam Faegh, B. Gould, S. Wolff, Azadeh Haghighi","doi":"10.1115/1.4062237","DOIUrl":null,"url":null,"abstract":"\n Physics-informed deep learning (PIDL) is one of the emerging topics in additive manufacturing (AM). However, the success of previous PIDL approaches is generally significantly dependent on the existence of massive datasets. As the data collection in AM is usually challenging, a novel Architecture-driven PIDL structure named APIDL based on the deep unfolding approach for limited data scenarios has been proposed in the current study for predicting thermal history in the laser powder bed fusion process. The connections in this machine learning architecture are inspired by iterative thermal model equations. In other words, each iteration of the thermal model is mapped to a layer of the neural network. The hyper-parameters of the APIDL model are tuned, and its performance is analyzed. The APIDL for 1000 points with 80:20 split ratio achieves a testing mean absolute percentage error (MAPE) of 2.8% and R2 value of 0.936. The APIDL is compared with the artificial neural network, extra trees regressor (ETR), support vector regressor, and long short-term memory algorithms. It was shown that the proposed APIDL model outperforms the others. The MAPE and R2 of APIDL are 55.7% lower and 15.6% higher than the ETR, which had the best performance among other pure ML models.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architecture-driven Physics-informed Deep Learning for Temperature Prediction in Laser Powder Bed Fusion Additive Manufacturing with Limited Data\",\"authors\":\"Suyog Ghungrad, Meysam Faegh, B. Gould, S. Wolff, Azadeh Haghighi\",\"doi\":\"10.1115/1.4062237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Physics-informed deep learning (PIDL) is one of the emerging topics in additive manufacturing (AM). However, the success of previous PIDL approaches is generally significantly dependent on the existence of massive datasets. As the data collection in AM is usually challenging, a novel Architecture-driven PIDL structure named APIDL based on the deep unfolding approach for limited data scenarios has been proposed in the current study for predicting thermal history in the laser powder bed fusion process. The connections in this machine learning architecture are inspired by iterative thermal model equations. In other words, each iteration of the thermal model is mapped to a layer of the neural network. The hyper-parameters of the APIDL model are tuned, and its performance is analyzed. The APIDL for 1000 points with 80:20 split ratio achieves a testing mean absolute percentage error (MAPE) of 2.8% and R2 value of 0.936. The APIDL is compared with the artificial neural network, extra trees regressor (ETR), support vector regressor, and long short-term memory algorithms. It was shown that the proposed APIDL model outperforms the others. The MAPE and R2 of APIDL are 55.7% lower and 15.6% higher than the ETR, which had the best performance among other pure ML models.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062237\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062237","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Architecture-driven Physics-informed Deep Learning for Temperature Prediction in Laser Powder Bed Fusion Additive Manufacturing with Limited Data
Physics-informed deep learning (PIDL) is one of the emerging topics in additive manufacturing (AM). However, the success of previous PIDL approaches is generally significantly dependent on the existence of massive datasets. As the data collection in AM is usually challenging, a novel Architecture-driven PIDL structure named APIDL based on the deep unfolding approach for limited data scenarios has been proposed in the current study for predicting thermal history in the laser powder bed fusion process. The connections in this machine learning architecture are inspired by iterative thermal model equations. In other words, each iteration of the thermal model is mapped to a layer of the neural network. The hyper-parameters of the APIDL model are tuned, and its performance is analyzed. The APIDL for 1000 points with 80:20 split ratio achieves a testing mean absolute percentage error (MAPE) of 2.8% and R2 value of 0.936. The APIDL is compared with the artificial neural network, extra trees regressor (ETR), support vector regressor, and long short-term memory algorithms. It was shown that the proposed APIDL model outperforms the others. The MAPE and R2 of APIDL are 55.7% lower and 15.6% higher than the ETR, which had the best performance among other pure ML models.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining