W. Birk, R. Hostettler, M. Razi, K. Atta, Rasmus Tammia
{"title":"用于估计和控制的过程工业数字孪生的自动生成和更新综述","authors":"W. Birk, R. Hostettler, M. Razi, K. Atta, Rasmus Tammia","doi":"10.3389/fcteg.2022.954858","DOIUrl":null,"url":null,"abstract":"This review aims at assessing the opportunities and challenges of creating and using digital twins for process industrial systems over their life-cycle in the context of estimation and control. The scope is, therefore, to provide a survey on mechanisms to generate models for process industrial systems using machine learning (purely data-driven) and automated equation-based modeling. In particular, we consider learning, validation, and updating of large-scale (i.e., plant-wide or plant-stage but not component-wide) equation-based process models. These aspects are discussed in relation to typical application cases for the digital twins creating value for users both on the operational and planning level for process industrial systems. These application cases are also connected to the needed technologies and the maturity of those as given by the state of the art. Combining all aspects, a way forward to enable the automatic generation and updating of digital twins is proposed, outlining the required research and development activities. The paper is the outcome of the research project AutoTwin-PRE funded by Strategic Innovation Program PiiA within the Swedish Innovation Agency VINNOVA and the academic version of an industry report prior published by PiiA.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic generation and updating of process industrial digital twins for estimation and control - A review\",\"authors\":\"W. Birk, R. Hostettler, M. Razi, K. Atta, Rasmus Tammia\",\"doi\":\"10.3389/fcteg.2022.954858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review aims at assessing the opportunities and challenges of creating and using digital twins for process industrial systems over their life-cycle in the context of estimation and control. The scope is, therefore, to provide a survey on mechanisms to generate models for process industrial systems using machine learning (purely data-driven) and automated equation-based modeling. In particular, we consider learning, validation, and updating of large-scale (i.e., plant-wide or plant-stage but not component-wide) equation-based process models. These aspects are discussed in relation to typical application cases for the digital twins creating value for users both on the operational and planning level for process industrial systems. These application cases are also connected to the needed technologies and the maturity of those as given by the state of the art. Combining all aspects, a way forward to enable the automatic generation and updating of digital twins is proposed, outlining the required research and development activities. The paper is the outcome of the research project AutoTwin-PRE funded by Strategic Innovation Program PiiA within the Swedish Innovation Agency VINNOVA and the academic version of an industry report prior published by PiiA.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2022.954858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2022.954858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic generation and updating of process industrial digital twins for estimation and control - A review
This review aims at assessing the opportunities and challenges of creating and using digital twins for process industrial systems over their life-cycle in the context of estimation and control. The scope is, therefore, to provide a survey on mechanisms to generate models for process industrial systems using machine learning (purely data-driven) and automated equation-based modeling. In particular, we consider learning, validation, and updating of large-scale (i.e., plant-wide or plant-stage but not component-wide) equation-based process models. These aspects are discussed in relation to typical application cases for the digital twins creating value for users both on the operational and planning level for process industrial systems. These application cases are also connected to the needed technologies and the maturity of those as given by the state of the art. Combining all aspects, a way forward to enable the automatic generation and updating of digital twins is proposed, outlining the required research and development activities. The paper is the outcome of the research project AutoTwin-PRE funded by Strategic Innovation Program PiiA within the Swedish Innovation Agency VINNOVA and the academic version of an industry report prior published by PiiA.