提高和优化智能电网系统电能质量和潮流的混合方法

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL Systems Engineering Pub Date : 2022-10-20 DOI:10.1002/sys.21645
Anil Kumar Dsouza, Ananthapadmanabha Thammaiah, L. M. Venkatesh
{"title":"提高和优化智能电网系统电能质量和潮流的混合方法","authors":"Anil Kumar Dsouza, Ananthapadmanabha Thammaiah, L. M. Venkatesh","doi":"10.1002/sys.21645","DOIUrl":null,"url":null,"abstract":"This article proposes a hybrid approach for power flow management and power quality (PQ) improvement in smart grid (SG) system. The proposed methodology is designed into two phases, power flow management is the first stage and power quality improvement is the second stage of the system. The key purpose of the proposed method is “to regulate that power flow depends on variation of source and load side parameters deliver the highest PQ.” The initial phase of power flow management is executed by using Improved Binary Sailfish Optimizer (IBSFO) approach. The control signal is recognized by the IBSFO approach against active and reactive power variation. The second phase of power quality enhancement is implemented by K2ORBFNN, which is the combination of Kho‐Kho optimization (KKO) and Radial Basis Function Neural Network (RBFNN). The gain parameter of the proportional integral (PI) controller is tuned based on load current, DC link, and voltage sources using K2ORBFNN approach. The prediction of optimal control signal minimizes the error which is obtained by RBFNN approach. The proposed method is utilized to attain compensating non‐linear load current harmonics, compensating reactive load power requirement, compensating unbalanced load current with neutral current. Finally, the performance of proposed system is executed in the MATLAB platform and performance is compared with existing techniques. The efficiency under the trails of 100, 200, 500, and 1000 attains 99.1673%, 99.4567%, 99.8402%, and 99.9879%.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":"26 1","pages":"133 - 148"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach for enhancing and optimizing the power quality and power flow in Smart Grid Connected System\",\"authors\":\"Anil Kumar Dsouza, Ananthapadmanabha Thammaiah, L. M. Venkatesh\",\"doi\":\"10.1002/sys.21645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a hybrid approach for power flow management and power quality (PQ) improvement in smart grid (SG) system. The proposed methodology is designed into two phases, power flow management is the first stage and power quality improvement is the second stage of the system. The key purpose of the proposed method is “to regulate that power flow depends on variation of source and load side parameters deliver the highest PQ.” The initial phase of power flow management is executed by using Improved Binary Sailfish Optimizer (IBSFO) approach. The control signal is recognized by the IBSFO approach against active and reactive power variation. The second phase of power quality enhancement is implemented by K2ORBFNN, which is the combination of Kho‐Kho optimization (KKO) and Radial Basis Function Neural Network (RBFNN). The gain parameter of the proportional integral (PI) controller is tuned based on load current, DC link, and voltage sources using K2ORBFNN approach. The prediction of optimal control signal minimizes the error which is obtained by RBFNN approach. The proposed method is utilized to attain compensating non‐linear load current harmonics, compensating reactive load power requirement, compensating unbalanced load current with neutral current. Finally, the performance of proposed system is executed in the MATLAB platform and performance is compared with existing techniques. The efficiency under the trails of 100, 200, 500, and 1000 attains 99.1673%, 99.4567%, 99.8402%, and 99.9879%.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":\"26 1\",\"pages\":\"133 - 148\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21645\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21645","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种智能电网系统潮流管理和电能质量改善的混合方法。提出的方法分为两个阶段,潮流管理是第一阶段,电能质量改善是第二阶段。提出的方法的关键目的是“调节功率流取决于源侧和负载侧参数的变化,从而产生最高的PQ”。潮流管理的初始阶段采用改进的二进制旗鱼优化器(IBSFO)方法。根据有功和无功功率的变化,采用IBSFO方法对控制信号进行识别。第二阶段的电能质量增强是由Kho - Kho优化(KKO)和径向基函数神经网络(RBFNN)相结合的K2ORBFNN实现的。基于负载电流、直流链路和电压源,采用K2ORBFNN方法对比例积分(PI)控制器的增益参数进行了调谐。最优控制信号的预测使RBFNN方法得到的误差最小。该方法可实现补偿非线性负载电流谐波、补偿无功负载功率需求、用中性电流补偿不平衡负载电流。最后,在MATLAB平台上对系统进行了性能测试,并与现有技术进行了性能比较。100、200、500、1000轨迹下的效率分别为99.1673%、99.4567%、99.8402%、99.9879%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid approach for enhancing and optimizing the power quality and power flow in Smart Grid Connected System
This article proposes a hybrid approach for power flow management and power quality (PQ) improvement in smart grid (SG) system. The proposed methodology is designed into two phases, power flow management is the first stage and power quality improvement is the second stage of the system. The key purpose of the proposed method is “to regulate that power flow depends on variation of source and load side parameters deliver the highest PQ.” The initial phase of power flow management is executed by using Improved Binary Sailfish Optimizer (IBSFO) approach. The control signal is recognized by the IBSFO approach against active and reactive power variation. The second phase of power quality enhancement is implemented by K2ORBFNN, which is the combination of Kho‐Kho optimization (KKO) and Radial Basis Function Neural Network (RBFNN). The gain parameter of the proportional integral (PI) controller is tuned based on load current, DC link, and voltage sources using K2ORBFNN approach. The prediction of optimal control signal minimizes the error which is obtained by RBFNN approach. The proposed method is utilized to attain compensating non‐linear load current harmonics, compensating reactive load power requirement, compensating unbalanced load current with neutral current. Finally, the performance of proposed system is executed in the MATLAB platform and performance is compared with existing techniques. The efficiency under the trails of 100, 200, 500, and 1000 attains 99.1673%, 99.4567%, 99.8402%, and 99.9879%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
期刊最新文献
Enterprise architecture contribution in distributed agile software development A comparative experiment between textual requirements and model‐based requirements on proxies for contractual safety A survey and analysis of drone detection systems using a systems approach superposed on scenarios A team‐centric metric framework for testing and evaluation of human‐machine teams Model‐based systems engineering approach to the study of electromagnetic interference and compatibility in wireless powered microelectromechanical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1