在一类新的弹性体本构关系中模拟胶金属和其他新开发的钛合金

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Archives of Mechanics Pub Date : 2017-03-07 DOI:10.24423/AOM.2659
V. Kulvait, J. Málek, K. Rajagopal
{"title":"在一类新的弹性体本构关系中模拟胶金属和其他新开发的钛合金","authors":"V. Kulvait, J. Málek, K. Rajagopal","doi":"10.24423/AOM.2659","DOIUrl":null,"url":null,"abstract":"Many titanium alloys and even materials such as concrete exhibit a nonlinear relationship between strain and stress, when the strain is small enough that the square of the norm of the displacement gradient can be ignored in comparison to the norm of the displacement gradient. Such response cannot be described within the classical theory of Cauchy elasticity wherein a linearization of the nonlinear strain leads to the classical linearized elastic response. A new framework for elasticity has been put into place in which one can justify rigorously a nonlinear relationship between the linearized strain and stress. Here, we consider one such model based on a power-law relationship. Previous attempts at describing such response have been either limited to the response of one particular material, e.g. Gum Metal, or involved a model with more material moduli, than the model considered in this work. For the uniaxial response of several metallic alloys, the model that is being considered fits experimental data exceedingly well.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Modeling Gum Metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies\",\"authors\":\"V. Kulvait, J. Málek, K. Rajagopal\",\"doi\":\"10.24423/AOM.2659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many titanium alloys and even materials such as concrete exhibit a nonlinear relationship between strain and stress, when the strain is small enough that the square of the norm of the displacement gradient can be ignored in comparison to the norm of the displacement gradient. Such response cannot be described within the classical theory of Cauchy elasticity wherein a linearization of the nonlinear strain leads to the classical linearized elastic response. A new framework for elasticity has been put into place in which one can justify rigorously a nonlinear relationship between the linearized strain and stress. Here, we consider one such model based on a power-law relationship. Previous attempts at describing such response have been either limited to the response of one particular material, e.g. Gum Metal, or involved a model with more material moduli, than the model considered in this work. For the uniaxial response of several metallic alloys, the model that is being considered fits experimental data exceedingly well.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.2659\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.2659","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 23

摘要

当应变小到与位移梯度的范数相比可以忽略位移梯度的范的平方时,许多钛合金甚至诸如混凝土的材料在应变和应力之间表现出非线性关系。这种响应不能在柯西弹性的经典理论中描述,其中非线性应变的线性化导致经典的线性化弹性响应。一个新的弹性框架已经建立起来,在这个框架中,人们可以严格证明线性应变和应力之间的非线性关系。在这里,我们考虑一个基于幂律关系的这样的模型。以前描述这种响应的尝试要么局限于一种特定材料的响应,例如口香糖金属,要么涉及比本工作中考虑的模型具有更多材料模量的模型。对于几种金属合金的单轴响应,所考虑的模型与实验数据非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Gum Metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies
Many titanium alloys and even materials such as concrete exhibit a nonlinear relationship between strain and stress, when the strain is small enough that the square of the norm of the displacement gradient can be ignored in comparison to the norm of the displacement gradient. Such response cannot be described within the classical theory of Cauchy elasticity wherein a linearization of the nonlinear strain leads to the classical linearized elastic response. A new framework for elasticity has been put into place in which one can justify rigorously a nonlinear relationship between the linearized strain and stress. Here, we consider one such model based on a power-law relationship. Previous attempts at describing such response have been either limited to the response of one particular material, e.g. Gum Metal, or involved a model with more material moduli, than the model considered in this work. For the uniaxial response of several metallic alloys, the model that is being considered fits experimental data exceedingly well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mechanics
Archives of Mechanics 工程技术-材料科学:表征与测试
CiteScore
1.40
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on: -mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities; -methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems; -dynamics of material systems; -fluid flows and interactions with solids. Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above. The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc. Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.
期刊最新文献
Comparative FE-studies of interface behavior of granular Cosserat materials under constant pressure and constant volume conditions Application of a geometrically nonlinear elastoplastic gradient-enhanced damage model with incremental potential to composite microstructures Rotorcraft thickness noise control Transient dynamic analysis of functionally graded micro-beams considering small-scale effects Quasi-static and dynamic characterization of ultrafine-grained 2017A-T4 aluminium alloy processed by accumulative roll bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1