{"title":"一种用于自注意机制的双向GRU结构:一种具有混合单词嵌入的自适应多层方法","authors":"Amit Pimpalkar, Jeberson Retna Raj","doi":"10.46604/ijeti.2023.11510","DOIUrl":null,"url":null,"abstract":"Sentiment analysis (SA) has become an essential component of natural language processing (NLP) with numerous practical applications to understanding “what other people think”. Various techniques have been developed to tackle SA using deep learning (DL); however, current research lacks comprehensive strategies incorporating multiple-word embeddings. This study proposes a self-attention mechanism that leverages DL and involves the contextual integration of word embedding with a time-dispersed bidirectional gated recurrent unit (Bi-GRU). This work employs word embedding approaches GloVe, word2vec, and fastText to achieve better predictive capabilities. By integrating these techniques, the study aims to improve the classifier’s capability to precisely analyze and categorize sentiments in textual data from the domain of movies. The investigation seeks to enhance the classifier’s performance in NLP tasks by addressing the challenges of underfitting and overfitting in DL. To evaluate the model’s effectiveness, an openly available IMDb dataset was utilized, achieving a remarkable testing accuracy of 99.70%.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bi-Directional GRU Architecture for the Self-Attention Mechanism: An Adaptable, Multi-Layered Approach with Blend of Word Embedding\",\"authors\":\"Amit Pimpalkar, Jeberson Retna Raj\",\"doi\":\"10.46604/ijeti.2023.11510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis (SA) has become an essential component of natural language processing (NLP) with numerous practical applications to understanding “what other people think”. Various techniques have been developed to tackle SA using deep learning (DL); however, current research lacks comprehensive strategies incorporating multiple-word embeddings. This study proposes a self-attention mechanism that leverages DL and involves the contextual integration of word embedding with a time-dispersed bidirectional gated recurrent unit (Bi-GRU). This work employs word embedding approaches GloVe, word2vec, and fastText to achieve better predictive capabilities. By integrating these techniques, the study aims to improve the classifier’s capability to precisely analyze and categorize sentiments in textual data from the domain of movies. The investigation seeks to enhance the classifier’s performance in NLP tasks by addressing the challenges of underfitting and overfitting in DL. To evaluate the model’s effectiveness, an openly available IMDb dataset was utilized, achieving a remarkable testing accuracy of 99.70%.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.11510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.11510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Bi-Directional GRU Architecture for the Self-Attention Mechanism: An Adaptable, Multi-Layered Approach with Blend of Word Embedding
Sentiment analysis (SA) has become an essential component of natural language processing (NLP) with numerous practical applications to understanding “what other people think”. Various techniques have been developed to tackle SA using deep learning (DL); however, current research lacks comprehensive strategies incorporating multiple-word embeddings. This study proposes a self-attention mechanism that leverages DL and involves the contextual integration of word embedding with a time-dispersed bidirectional gated recurrent unit (Bi-GRU). This work employs word embedding approaches GloVe, word2vec, and fastText to achieve better predictive capabilities. By integrating these techniques, the study aims to improve the classifier’s capability to precisely analyze and categorize sentiments in textual data from the domain of movies. The investigation seeks to enhance the classifier’s performance in NLP tasks by addressing the challenges of underfitting and overfitting in DL. To evaluate the model’s effectiveness, an openly available IMDb dataset was utilized, achieving a remarkable testing accuracy of 99.70%.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.