S. Lemaire, G. Vaz, Menno Deij ‐ van Rijswijk, S. Turnock
{"title":"插补方式对舵-螺旋桨相互作用反演法精度的影响","authors":"S. Lemaire, G. Vaz, Menno Deij ‐ van Rijswijk, S. Turnock","doi":"10.1115/1.4056681","DOIUrl":null,"url":null,"abstract":"\n The overset method and associated interpolation schemes are usually thoroughly verified only on synthetic or academic test cases for which conclusions might not directly translate to real engineering problems. In the present work, an overset grid method is used to simulate a rudder-propeller flow, for which a comprehensive verification and validation study is performed. Three overset interpolation schemes (from first to third order) are tested to quantify and qualify numerical errors on integral quantities, mass imbalance, flow features and rudder pressure distributions. The performance overhead is also measured to help make accuracy-performance balance decisions. Rigorous solution verification is performed to estimate time and space discretisation, iterative and statistical uncertainties. Validation of the rudder flow against experimental data is also done.\n The results show that, while the choice of interpolation scheme has minimal impact on time-averaged integral quantities (like forces), they do influence the smoothness of the time signals, with the first order scheme resulting in large intensity high-frequency temporal oscillations. Lower order interpolation methods also produce more interpolation artefacts in fringe cells, which are then convected downstream. Mass imbalance is also affected by the interpolation scheme, with higher order schemes (third order) resulting in an order of magnitude lower flux errors. The limitations of first order schemes do not, however, result in significant lower computational overhead, with the second order being even cheaper than the first order one in the tested implementation. Lastly, validation shows promising results with rudder forces within 10% of the experiments.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Interpolation Scheme On the Accuracy of Overset Method for Computing Rudder-propeller Interaction\",\"authors\":\"S. Lemaire, G. Vaz, Menno Deij ‐ van Rijswijk, S. Turnock\",\"doi\":\"10.1115/1.4056681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The overset method and associated interpolation schemes are usually thoroughly verified only on synthetic or academic test cases for which conclusions might not directly translate to real engineering problems. In the present work, an overset grid method is used to simulate a rudder-propeller flow, for which a comprehensive verification and validation study is performed. Three overset interpolation schemes (from first to third order) are tested to quantify and qualify numerical errors on integral quantities, mass imbalance, flow features and rudder pressure distributions. The performance overhead is also measured to help make accuracy-performance balance decisions. Rigorous solution verification is performed to estimate time and space discretisation, iterative and statistical uncertainties. Validation of the rudder flow against experimental data is also done.\\n The results show that, while the choice of interpolation scheme has minimal impact on time-averaged integral quantities (like forces), they do influence the smoothness of the time signals, with the first order scheme resulting in large intensity high-frequency temporal oscillations. Lower order interpolation methods also produce more interpolation artefacts in fringe cells, which are then convected downstream. Mass imbalance is also affected by the interpolation scheme, with higher order schemes (third order) resulting in an order of magnitude lower flux errors. The limitations of first order schemes do not, however, result in significant lower computational overhead, with the second order being even cheaper than the first order one in the tested implementation. Lastly, validation shows promising results with rudder forces within 10% of the experiments.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Influence of Interpolation Scheme On the Accuracy of Overset Method for Computing Rudder-propeller Interaction
The overset method and associated interpolation schemes are usually thoroughly verified only on synthetic or academic test cases for which conclusions might not directly translate to real engineering problems. In the present work, an overset grid method is used to simulate a rudder-propeller flow, for which a comprehensive verification and validation study is performed. Three overset interpolation schemes (from first to third order) are tested to quantify and qualify numerical errors on integral quantities, mass imbalance, flow features and rudder pressure distributions. The performance overhead is also measured to help make accuracy-performance balance decisions. Rigorous solution verification is performed to estimate time and space discretisation, iterative and statistical uncertainties. Validation of the rudder flow against experimental data is also done.
The results show that, while the choice of interpolation scheme has minimal impact on time-averaged integral quantities (like forces), they do influence the smoothness of the time signals, with the first order scheme resulting in large intensity high-frequency temporal oscillations. Lower order interpolation methods also produce more interpolation artefacts in fringe cells, which are then convected downstream. Mass imbalance is also affected by the interpolation scheme, with higher order schemes (third order) resulting in an order of magnitude lower flux errors. The limitations of first order schemes do not, however, result in significant lower computational overhead, with the second order being even cheaper than the first order one in the tested implementation. Lastly, validation shows promising results with rudder forces within 10% of the experiments.